Non-synchronous ductile and brittle removal mechanisms for conventional and ultrasonic vibration-assisted scratching of ceramic matrix composites

被引:0
作者
An, Wenzhao [1 ,2 ]
Li, Qilin [3 ]
Gao, Xiaoxing [1 ,2 ]
Chen, Bochuan [1 ,2 ]
Luo, Yang [1 ,2 ]
Xu, Weiwei [1 ,2 ]
Wang, Liyu [1 ,2 ]
Yuan, Songmei [1 ,2 ]
机构
[1] Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
[2] Beihang Univ, Ningbo Inst Technol, Ningbo 315832, Peoples R China
[3] Tsinghua Univ, Dept Mech Engn, Beijing 100084, Peoples R China
关键词
A. Ceramic matrix composites; C. Analytical modelling; E; Machining; Ultrasonic vibration-assisted scratching; DEFORMATION MECHANISM; C/SIC COMPOSITES; CUTTING FORCE; MODEL; FRACTURE; DAMAGE;
D O I
10.1016/j.compositesa.2025.108718
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ceramic matrix composites (CMCs) are widely recognised as difficult-to-machine materials. The use of diamond abrasive tools combined with ultrasonic vibration offers unique benefits for precision machining. Understanding the differences in material removal mechanisms between ultrasonic vibration-assisted scratching (UAS) and conventional scratching (CS) is crucial for achieving efficient, accurate machining of high-value workpieces. Herein, variable-depth CS and UAS tests were performed, revealing for the first time two brittle removal mechanisms in CMCs: fibre-bending fracture from non-synchronous removal in CS and cyclic indentationhammering-crack extension in UAS. Further, the non-impulse (CS) and impulse (UAS) force models are established for ductile and brittle removal, respectively. These models were successfully validated through experimental scratching-force data. Results suggest that material removal behavior is primarily influenced by the type of fiber bending fracture and crack extension tip shielding.
引用
收藏
页数:18
相关论文
共 38 条
[1]   Machining of SiC ceramic matrix composites: A review [J].
An, Qinglong ;
Chen, Jie ;
Ming, Weiwei ;
Chen, Ming .
CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (04) :540-567
[2]   ON THE MACHINING OF FIBER-REINFORCED PLASTIC (FRP) COMPOSITE LAMINATES [J].
BHATNAGAR, N ;
RAMAKRISHNAN, N ;
NAIK, NK ;
KOMANDURI, R .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 1995, 35 (05) :701-716
[3]   Simulation of crack propagation/deflection in ceramic matrix continuous fiber reinforced composites with weak interphase via the extended finite element method [J].
Braginsky, M. ;
Przybyla, C. P. .
COMPOSITE STRUCTURES, 2016, 136 :538-545
[4]   Towards understanding the cutting and fracture mechanism in Ceramic Matrix Composites [J].
Diaz, O. Gavalda ;
Axinte, D. A. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2017, 118 :12-25
[5]   Experimental studies on drilling tool load and machining quality of C/SiC composites in rotary ultrasonic machining [J].
Ding, Kai ;
Fu, Yucan ;
Su, Honghua ;
Chen, Yan ;
Yu, Xizhai ;
Ding, Guozhi .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) :2900-2907
[6]  
Fischer-Cripps A.C., 2007, Introduction to Contact Mechanics, Introduction to Contact Mechanics, Mechanical Engineering Series, DOI [DOI 10.1007/978-0-387-68188-7, 10.1007/978-0-387-68188-77]
[7]  
Fischer-Cripps A.C., 2007, INTRO CONTACT MECH, P101, DOI [10.1007/978-0-387-68188-7_6, DOI 10.1007/978-0-387-68188-7_6, 10.1007/978-0-387-68188-76, DOI 10.1007/978-0-387-68188-76]
[8]   Composite materials parts manufacturing [J].
Fleischer, Juergen ;
Teti, Roberto ;
Lanza, Gisela ;
Mativenga, Paul ;
Moehring, Hans-Christian ;
Caggiano, Alessandra .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2018, 67 (02) :603-626
[9]   Localized mechanical property assessment of SiC/SiC composite materials [J].
Frazer, D. ;
Abad, M. D. ;
Krumwiede, D. ;
Back, C. A. ;
Khalifa, H. E. ;
Deck, C. P. ;
Hosemann, P. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 70 :93-101
[10]   Mode I and Mode II interfacial fracture energy of SiC/BN/SiC CMCs [J].
Gavalda-Diaz, Oriol ;
Manno, Riccardo ;
Melro, Antonio ;
Allegri, Giuliano ;
Hallett, Stephen R. ;
Vandeperre, Luc ;
Saiz, Eduardo ;
Giuliani, Finn .
ACTA MATERIALIA, 2021, 215