Scalable unpaired multi-view clustering with Bipartite Graph Matching

被引:0
|
作者
Li, Xingfeng [1 ,2 ,3 ]
Pan, Yuangang [2 ,4 ]
Sun, Yuan [5 ]
Sun, Yinghui [3 ]
Sun, Quansen [3 ]
Ren, Zhenwen [1 ]
Tsang, Ivor W. [2 ,4 ]
机构
[1] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Peoples R China
[2] Agcy Sci Technol & Res, Ctr Frontier AI Res, Singapore 138632, Singapore
[3] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[4] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
[5] Sichuan Univ, Coll Comp Sci, Chengdu 610044, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised learning; Unpaired multi-view clustering; Sample-unpaired problem; Anchor misaligned problem; MATRIX FACTORIZATION;
D O I
10.1016/j.inffus.2024.102786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relying on the assumption of view pairing, anchor-based multi-view clustering has been highly effective in handling large-scale datasets. Whereas, during data collection and transmission of many real-world applications, various issues such as asynchronous Internet of Things sensors and surveillances or asynchronous Alzheimer diagnosis data can disrupt the pairing assumption in multi-view data, causing Sample Unpaired Problem (SUP). This SUP escalates into an even greater challenge in large-scale clustering tasks. To overcome this challenge, we propose a Scalable Unpaired Multi-view Clustering with Bipartite Graph Matching (SUMC-BGM). SUMC-BGM has devised a novel bipartite graph matching framework to learn a consistent structure bipartite graph for clustering from large-scale unpaired data. This framework primarily addresses two challenges: (1) To solve anchor misalignment, we first propose the desired anchor alignment learning paradigm to ensure the alignment, fairness, compactness, and diversity of anchors. (2) To address edge misalignment, we further propose an edge alignment learning scheme to ensure consistency in the bipartite graph structure of the learned view-specific edges. To the best of our knowledge, SUMC-BGM represents the pioneering endeavor to address the less-touched large-scale unpaired challenge. Extensive experiments verify the superiority, validity, and efficiency of SUMC-BGM compared with 22 state-of-the-art competitors on the 13 benchmark datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multi-view clustering via dynamic unified bipartite graph learning
    Zhao, Xingwang
    Wang, Shujun
    Liu, Xiaolin
    Liang, Jiye
    PATTERN RECOGNITION, 2024, 156
  • [22] Unpaired Multi-View Kernel Spectral Clustering
    Houthuys, Lynn
    Suykens, Johan A. K.
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1307 - 1313
  • [23] Scalable incomplete multi-view clustering via tensor Schatten p-norm and tensorized bipartite graph
    Ji, Guangyan
    Lu, Gui-Fu
    Cai, Bing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [24] Scalable and Structural Multi-View Graph Clustering With Adaptive Anchor Fusion
    Wang, Siwei
    Liu, Xinwang
    Liu, Suyuan
    Tu, Wenxuan
    Zhu, En
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4627 - 4639
  • [25] Efficient Multi-View Clustering via Unified and Discrete Bipartite Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Cai, Xiao-Sha
    Wang, Chang-Dong
    He, Chaobo
    Tang, Yong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11436 - 11447
  • [26] Bipartite Graph-based Discriminative Feature Learning for Multi-View Clustering
    Yan, Weiqing
    Xu, Jindong
    Liu, Jinglei
    Yue, Guanghui
    Tang, Chang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3403 - 3411
  • [27] Multi-view clustering via high-order bipartite graph fusion
    Zhao, Zihua
    Wang, Ting
    Xin, Haonan
    Wang, Rong
    Nie, Feiping
    INFORMATION FUSION, 2025, 113
  • [28] Efficient Multi-View Clustering via Essential Tensorized Bipartite Graph Learning
    Gu, Wanrong
    Guo, Junlong
    Wang, Haiyan
    Zhang, Guangyu
    Zhang, Bin
    Chen, Jiazhou
    Cai, Hongmin
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [29] Auto-weighted multi-view clustering via hierarchical bipartite graph
    Zhou, Jie
    Luo, Xinglong
    Nie, Feiping
    He, Xingshi
    NEUROCOMPUTING, 2024, 605
  • [30] Large-Scale Multi-View Spectral Clustering via Bipartite Graph
    Li, Yeqing
    Nie, Feiping
    Huang, Heng
    Huang, Junzhou
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 2750 - 2756