Scalable unpaired multi-view clustering with Bipartite Graph Matching

被引:0
|
作者
Li, Xingfeng [1 ,2 ,3 ]
Pan, Yuangang [2 ,4 ]
Sun, Yuan [5 ]
Sun, Yinghui [3 ]
Sun, Quansen [3 ]
Ren, Zhenwen [1 ]
Tsang, Ivor W. [2 ,4 ]
机构
[1] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Peoples R China
[2] Agcy Sci Technol & Res, Ctr Frontier AI Res, Singapore 138632, Singapore
[3] Nanjing Univ Sci & Technol, Dept Comp Sci, Nanjing 210094, Peoples R China
[4] Agcy Sci Technol & Res, Inst High Performance Comp, Singapore 138632, Singapore
[5] Sichuan Univ, Coll Comp Sci, Chengdu 610044, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised learning; Unpaired multi-view clustering; Sample-unpaired problem; Anchor misaligned problem; MATRIX FACTORIZATION;
D O I
10.1016/j.inffus.2024.102786
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Relying on the assumption of view pairing, anchor-based multi-view clustering has been highly effective in handling large-scale datasets. Whereas, during data collection and transmission of many real-world applications, various issues such as asynchronous Internet of Things sensors and surveillances or asynchronous Alzheimer diagnosis data can disrupt the pairing assumption in multi-view data, causing Sample Unpaired Problem (SUP). This SUP escalates into an even greater challenge in large-scale clustering tasks. To overcome this challenge, we propose a Scalable Unpaired Multi-view Clustering with Bipartite Graph Matching (SUMC-BGM). SUMC-BGM has devised a novel bipartite graph matching framework to learn a consistent structure bipartite graph for clustering from large-scale unpaired data. This framework primarily addresses two challenges: (1) To solve anchor misalignment, we first propose the desired anchor alignment learning paradigm to ensure the alignment, fairness, compactness, and diversity of anchors. (2) To address edge misalignment, we further propose an edge alignment learning scheme to ensure consistency in the bipartite graph structure of the learned view-specific edges. To the best of our knowledge, SUMC-BGM represents the pioneering endeavor to address the less-touched large-scale unpaired challenge. Extensive experiments verify the superiority, validity, and efficiency of SUMC-BGM compared with 22 state-of-the-art competitors on the 13 benchmark datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Scalable sparse bipartite graph factorization for multi-view clustering
    Wu, Jinghan
    Yang, Ben
    Yang, Shangzong
    Zhang, Xuetao
    Chen, Badong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [2] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [3] Unpaired Multi-View Graph Clustering With Cross-View Structure Matching
    Wen, Yi
    Wang, Siwei
    Liao, Qing
    Liang, Weixuan
    Liang, Ke
    Wan, Xinhang
    Liu, Xinwang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16049 - 16063
  • [4] Priori Anchor Labels Supervised Scalable Multi-View Bipartite Graph Clustering
    You, Jiali
    Ren, Zhenwen
    You, Xiaojian
    Li, Haoran
    Yao, Yuancheng
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10972 - 10979
  • [5] Bipartite Graph Based Multi-View Clustering
    Li, Lusi
    He, Haibo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (07) : 3111 - 3125
  • [6] Multi-View Clustering With Learned Bipartite Graph
    Li, Miaomiao
    Liang, Weixuan
    Liu, Xinwang
    IEEE ACCESS, 2021, 9 : 87952 - 87961
  • [7] Multi-view clustering with filtered bipartite graph
    Ji, Jintian
    Peng, Hailei
    Feng, Songhe
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [8] Scalable multi-view clustering with graph filtering
    Liu, Liang
    Chen, Peng
    Luo, Guangchun
    Kang, Zhao
    Luo, Yonggang
    Han, Sanchu
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (19): : 16213 - 16221
  • [9] Scalable multi-view clustering with graph filtering
    Liang Liu
    Peng Chen
    Guangchun Luo
    Zhao Kang
    Yonggang Luo
    Sanchu Han
    Neural Computing and Applications, 2022, 34 : 16213 - 16221
  • [10] Tensorized Bipartite Graph Learning for Multi-View Clustering
    Xia, Wei
    Gao, Quanxue
    Wang, Qianqian
    Gao, Xinbo
    Ding, Chris
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 5187 - 5202