Provably efficient learning with typed parametric models

被引:0
|
作者
Brunskill, Emma [1 ]
Leffler, Bethany R. [1 ]
Li, Hong [1 ]
Littman, Michael L. [2 ]
Roy, Nicholas [2 ]
机构
[1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02143, United States
[2] Department of Computer Science, Rutgers University Piscataway, NJ 08854, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Markov processes
引用
收藏
页码:1955 / 1988
相关论文
共 50 条
  • [41] Learning Provably Stable Local Volt/Var Controllers for Efficient Network Operation
    Yuan, Zhenyi
    Cavraro, Guido
    Singh, Manish K.
    Cortes, Jorge
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2024, 39 (01) : 2066 - 2079
  • [42] Provably Efficient Offline Reinforcement Learning for Partially Observable Markov Decision Processes
    Guo, Hongyi
    Cai, Qi
    Zhang, Yufeng
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [43] Provably Efficient Causal Model-Based Reinforcement Learning for Systematic Generalization
    Mutti, Mirco
    De Santi, Riccardo
    Rossi, Emanuele
    Calderon, Juan Felipe
    Bronstein, Michael
    Restelli, Marcello
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9251 - 9259
  • [44] Typed normal form bisimulation for parametric polymorphism
    Lassen, Soren B.
    Levy, Paul Blain
    TWENTY-THIRD ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2008, : 341 - +
  • [45] Parametric Manifold Learning of Gaussian Mixture Models
    Liu, Ziquan
    Yu, Lei
    Hsiao, Janet H.
    Chan, Antoni B.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3073 - 3079
  • [46] When to use parametric models in reinforcement learning?
    van Hasselt, Hado
    Hessel, Matteo
    Aslanides, John
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [47] Stochastic Thermodynamics of Learning Parametric Probabilistic Models
    Parsi, Shervin S.
    ENTROPY, 2024, 26 (02)
  • [48] LEARNING NON-PARAMETRIC MODELS OF PRONUNCIATION
    Hutchinson, Brian
    Droppo, Jasha
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4904 - 4907
  • [49] Efficient estimation of non parametric simultaneous equations models
    Tu, Y.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) : 3411 - 3416
  • [50] Learning from Demonstration: Provably Efficient Adversarial Policy Imitation with Linear Function Approximation
    Liu, Zhihan
    Zhang, Yufeng
    Fu, Zuyue
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,