Provably efficient learning with typed parametric models

被引:0
|
作者
Brunskill, Emma [1 ]
Leffler, Bethany R. [1 ]
Li, Hong [1 ]
Littman, Michael L. [2 ]
Roy, Nicholas [2 ]
机构
[1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02143, United States
[2] Department of Computer Science, Rutgers University Piscataway, NJ 08854, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Markov processes
引用
收藏
页码:1955 / 1988
相关论文
共 50 条
  • [31] Parametric polymorphism for typed prolog and λ-prolog
    Lect Notes Comput Sci, (47):
  • [32] Learning Neural Parametric Head Models
    Giebenhain, Simon
    Kirschstein, Tobias
    Georgopoulos, Markos
    Runz, Martin
    Agapito, Lourdes
    Niessner, Matthias
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21003 - 21012
  • [33] Contrastive UCB: Provably Efficient Contrastive Self-Supervised Learning in Online Reinforcement Learning
    Qiu, Shuang
    Wang, Lingxiao
    Bai, Chenjia
    Yang, Zhuoran
    Wang, Zhaoran
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [34] Parametric deformation of mesh models for efficient CAE
    Mizuno, Gaku
    Date, Hiroaki
    Kanai, Satoshi
    Kishinami, Takeshi
    Onosato, Masahiko
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3697 - +
  • [35] EFFICIENT ROBUST-TESTS IN PARAMETRIC MODELS
    BERAN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (01): : 73 - 86
  • [36] Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games
    Mao, Weichao
    Basar, Tamer
    DYNAMIC GAMES AND APPLICATIONS, 2023, 13 (01) : 165 - 186
  • [37] Provably Efficient Multi-Agent Reinforcement Learning with Fully Decentralized Communication
    Lidard, Justin
    Madhushani, Udari
    Leonard, Naomi Ehrich
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3311 - 3316
  • [38] Provably Efficient Reinforcement Learning with Linear Function Approximation under Adaptivity Constraints
    Wang, Tianhao
    Zhou, Dongruo
    Gu, Quanquan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [39] Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games
    Weichao Mao
    Tamer Başar
    Dynamic Games and Applications, 2023, 13 : 165 - 186
  • [40] Provably efficient stream merging
    Coffman, EG
    Jelenkovic, P
    Momcilovic, P
    WEB CACHING AND CONTENT DELIVERY, 2001, : 171 - 184