Provably efficient learning with typed parametric models

被引:0
|
作者
Brunskill, Emma [1 ]
Leffler, Bethany R. [1 ]
Li, Hong [1 ]
Littman, Michael L. [2 ]
Roy, Nicholas [2 ]
机构
[1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02143, United States
[2] Department of Computer Science, Rutgers University Piscataway, NJ 08854, United States
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Markov processes
引用
收藏
页码:1955 / 1988
相关论文
共 50 条
  • [21] Provably Efficient Causal Reinforcement Learning with Confounded Observational Data
    Wang, Lingxiao
    Yang, Zhuoran
    Wang, Zhaoran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] Typed parametric polymorphism for aspects
    Jagadeesan, Radha
    Jeffrey, Alan
    Riely, James
    SCIENCE OF COMPUTER PROGRAMMING, 2006, 63 (03) : 267 - 296
  • [23] Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
    Zhou, Dongruo
    He, Jiafan
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [24] Provably Efficient Reinforcement Learning in Partially Observable Dynamical Systems
    Uehara, Masatoshi
    Sekhari, Ayush
    Kallus, Nathan
    Lee, Jason D.
    Sun, Wen
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] Provably Efficient Offline Reinforcement Learning in Regular Decision Processes
    Cipollone, Roberto
    Jonsson, Anders
    Ronca, Alessandro
    Talebi, Mohammad Sadegh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] EFFICIENT ROBUST ESTIMATES IN PARAMETRIC MODELS
    BERAN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (01): : 91 - 108
  • [27] Provably efficient machine learning for quantum many-body problems
    Huang, Hsin-Yuan
    Kueng, Richard
    Torlai, Giacomo
    Albert, Victor V.
    Preskill, John
    SCIENCE, 2022, 377 (6613) : 1397 - +
  • [28] Provably Efficient Offline Reinforcement Learning With Trajectory-Wise Reward
    Xu, Tengyu
    Wang, Yue
    Zou, Shaofeng
    Liang, Yingbin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (09) : 6481 - 6518
  • [29] Provably Efficient Multi-Task Reinforcement Learning with Model Transfer
    Zhang, Chicheng
    Wang, Zhi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] Provably Efficient Neural GTD Algorithm for Off-policy Learning
    Wai, Hoi-To
    Yang, Zhuoran
    Wang, Zhaoran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33