On the eccentric connectivity index of trees with given domination number

被引:0
作者
Zhou, Ting [1 ]
Miao, Lianying [1 ]
Lin, Zhen [2 ]
Song, Wenyao [3 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221008, Jiangsu, Peoples R China
[2] Qinghai Normal Univ, Sch Math & Stat, Xining 810001, Qinghai, Peoples R China
[3] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree; Eccentric connectivity index; Domination number; Topological index; DISTANCE SUM; EXTREMAL VALUES; ZAGREB INDEXES; GRAPHS; RESPECT;
D O I
10.1016/j.dam.2024.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a simple connected finite graph. The eccentric connectivity index (ECI) of G isdefined as xi(c)(G) = Sigma(v is an element of V(G)) epsilon(G)(V)d(G)(v), where epsilon G(v) is the eccentricity of v, dG(v) is the degree of v. We denote the set of trees with order n and domination number gamma by T-n,T-gamma . In this paper, the extremal trees having the minimal ECI among Tn,gamma are determined. The tree among Tn,gamma satisfying 2 <= gamma <= inverted left perpendicular n/3 inverted right perpendicular having the maximal ECI is also characterized. For inverted left perpendicular n/3 inverted right perpendicular <= gamma <= 2n, the tree among all caterpillars with domination number gamma having the maximal ECI is determined. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:512 / 519
页数:8
相关论文
共 30 条
[1]   Extremal graphs for inequalities involving domination parameters [J].
Baogen, X ;
Cockayne, EJ ;
Haynes, TW ;
Hedetniemi, ST ;
Shangchao, Z .
DISCRETE MATHEMATICS, 2000, 216 (1-3) :1-10
[2]   Upper bound for the geometric-arithmetic index of trees with given domination number [J].
Bermudo, Sergio .
DISCRETE MATHEMATICS, 2023, 346 (01)
[3]   Extremal trees for the Randic index with given domination number [J].
Bermudo, Sergio ;
Napoles, Juan E. ;
Rada, Juan .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 375
[4]   On extremal Zagreb indices of trees with given domination number [J].
Borovicanin, Bojana ;
Furtula, Boris .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 279 :208-218
[5]  
Dankelmann P, 2004, UTILITAS MATHEMATICA, V65, P41
[6]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[7]   Extremal values on the eccentric distance sum of trees [J].
Geng, Xianya ;
Li, Shuchao ;
Zhang, Meng .
DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) :2427-2439
[8]   Maximum eccentric connectivity index for graphs with given diameter [J].
Hauweele, Pierre ;
Hertz, Alain ;
Melot, Hadrien ;
Ries, Bernard ;
Devillez, Gauvain .
DISCRETE APPLIED MATHEMATICS, 2019, 268 :102-111
[9]   On the quotients between the eccentric connectivity index and the eccentric distance sum of graphs with diameter 2 [J].
Hua, Hongbo .
DISCRETE APPLIED MATHEMATICS, 2020, 285 :297-300
[10]   Further results on the eccentric distance sum [J].
Hua, Hongbo ;
Zhang, Shenggui ;
Xu, Kexiang .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) :170-180