DFL: Dynamic Federated Split Learning in Heterogeneous IoT

被引:1
|
作者
Samikwa, Eric [1 ]
Di Maio, Antonio [1 ]
Braun, Torsten [1 ]
机构
[1] University of Bern, Institute of Computer Science, Bern,3012, Switzerland
来源
IEEE Transactions on Machine Learning in Communications and Networking | 2024年 / 2卷
关键词
D O I
10.1109/TMLCN.2024.3409205
中图分类号
学科分类号
摘要
50
引用
收藏
页码:733 / 752
相关论文
共 50 条
  • [1] μDFL: A Secure Microchained Decentralized Federated Learning Fabric Atop IoT Networks
    Xu, Ronghua
    Chen, Yu
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (03): : 2677 - 2688
  • [2] DISNET: Distributed Micro-Split Deep Learning in Heterogeneous Dynamic IoT
    Samikwa, Eric
    Di Maio, Antonio
    Braun, Torsten
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (04): : 6199 - 6216
  • [3] PervasiveFL: Pervasive Federated Learning for Heterogeneous IoT Systems
    Xia, Jun
    Liu, Tian
    Ling, Zhiwei
    Wang, Ting
    Fu, Xin
    Chen, Mingsong
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 4100 - 4111
  • [4] Effectively Heterogeneous Federated Learning: A Pairing and Split Learning Based Approach
    Shen, Jinglong
    Wang, Xiucheng
    Cheng, Nan
    Ma, Longfei
    Zhou, Conghao
    Zhang, Yuan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5847 - 5852
  • [5] Beyond Federated Learning for IoT: Efficient Split Learning With Caching and Model Customization
    Chawla, Manisha
    Gupta, Gagan Raj
    Gaddam, Shreyas
    Wadhwa, Manas
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 32617 - 32630
  • [6] Dynamic Aggregation for Heterogeneous Quantization in Federated Learning
    Chen, Shengbo
    Shen, Cong
    Zhang, Lanxue
    Tang, Yuanmin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (10) : 6804 - 6819
  • [7] PrivMaskFL: A private masking approach for heterogeneous federated learning in IoT
    Xiong, Jing
    Zhu, Hong
    COMPUTER COMMUNICATIONS, 2024, 214 : 100 - 112
  • [8] A decentralised federated learning scheme for heterogeneous devices in cognitive IoT
    Ge, Huanhuan
    Yang, Xingtao
    Wang, Jinlong
    Lyu, Zhihan
    International Journal of Cognitive Computing in Engineering, 2024, 5 : 357 - 366
  • [9] Clustering-Based Federated Learning for Heterogeneous IoT Data
    Li, Shumin
    Wei, Linna
    Zhang, Weidong
    Wu, Xuangou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 172 - 179
  • [10] AWE-DPFL: Adaptive weighting and dynamic privacy budget federated learning for heterogeneous data in IoT
    Zheng, Guiping
    Gong, Bei
    Guo, Chong
    Peng, Tianqi
    Gong, Mowei
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123