Low-Light Salient Object Detection by Learning to Highlight the Foreground Objects

被引:6
|
作者
Lu, Xiao [1 ]
Yuan, Yulin [1 ]
Liu, Xing [1 ]
Wang, Lucai [1 ]
Zhou, Xuanyu [1 ]
Yang, Yimin [2 ]
机构
[1] Hunan Normal Univ, Coll Engn & Design, Changsha 410081, Peoples R China
[2] Western Univ, Dept Elect & Comp Engn, London, ON N6A 3K7, Canada
基金
中国国家自然科学基金;
关键词
Salient object detection; low-light images; image enhancement; deep convolutional neural networks; datasets; ENHANCEMENT;
D O I
10.1109/TCSVT.2024.3377108
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Previous methods in salient object detection (SOD) mainly focused on favorable illumination circumstances while neglecting the performance in low-light condition, which significantly impedes the development of related down-stream tasks. In this work, considering that it is impractical to annotate the large-scale labels for this task, we present a framework (HDNet) to detect the salient objects in low-light images with the synthetic images. Our HDNet consists of a foreground highlight sub-network (HNet) and an appearance-aware detection sub-network (DNet), both of which can be learned jointly in an end-to-end manner. Specifically, to highlight the foreground objects, we design the HNet to estimate the parameters to adjust the dynamic range for each pixel adaptively, which can be trained via the weak supervision signals of the salient object labels. In addition, we design a simple detection network (DNet) with a contextual feature fusion module and a multi-scale feature refine module for detailed feature fusion and refinement. Furthermore, we contribute the first annotated dataset for salient object detection in low-light images (SOD-LL), including 6,000 labeled synthetic images (SOD-LLS) and 2,000 labeled real images (SOD-LLR). Experimental results on SOD-LL and other low-light videos in the wild demonstrate the effectiveness and generalization ability of our method. Our dataset and code are available at https://github.com/Ylinyuan/HDNet.
引用
收藏
页码:7712 / 7724
页数:13
相关论文
共 50 条
  • [41] Learning Salient Feature for Salient Object Detection Without Labels
    Li, Shuo
    Liu, Fang
    Jiao, Licheng
    Liu, Xu
    Chen, Puhua
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1012 - 1025
  • [42] LIGHT-WEIGHT SALIENT FOREGROUND DETECTION WITH ADAPTIVE MEMORY REQUIREMENT
    Casares, Mauricio
    Velipasalar, Senem
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1245 - 1248
  • [43] Salient object detection employing a local tree-structured low-rank representation and foreground consistency
    Zhang, Qiang
    Huo, Zhen
    Liu, Yi
    Pan, Yunhui
    Shan, Caifeng
    Han, Jungong
    PATTERN RECOGNITION, 2019, 92 : 119 - 134
  • [44] Combined Image Enhancement for Recyclable Waste Object Detection In Low-Light Environment
    Zhang, Junshen
    Kang, Li
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 265 - 269
  • [45] Object detection in low-light conditions based on DBS-YOLOv8
    Zhou, Lei
    Dong, Yanyan
    Ma, Bingya
    Yin, Zhewen
    Lu, Fan
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [46] LIGHT-WEIGHT SALIENT FOREGROUND DETECTION FOR EMBEDDED SMART CAMERAS
    Casares, Mauricio
    Velipasalar, Senem
    2008 SECOND ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2008, : 164 - 170
  • [47] Light-weight salient foreground detection for embedded smart cameras
    Casares, Mauricio
    Velipasalar, Senem
    Pinto, Alvaro
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2010, 114 (11) : 1223 - 1237
  • [48] Research on Improved YOLOv5 for Low-Light Environment Object Detection
    Wang, Jing
    Yang, Peng
    Liu, Yuansheng
    Shang, Duo
    Hui, Xin
    Song, Jinhong
    Chen, Xuehui
    ELECTRONICS, 2023, 12 (14)
  • [49] Multispectral Deep Neural Network Fusion Method for Low-Light Object Detection
    Thaker, Keval
    Chennupati, Sumanth
    Rawashdeh, Nathir
    Rawashdeh, Samir A.
    JOURNAL OF IMAGING, 2024, 10 (01)
  • [50] Lightweight Low-Light Object Detection Algorithm Based on YOLOv7
    Li Changyu
    Ge Lei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)