共 11 条
- [1] Fiore U., Palmieri F., Castiglione A., Et al., Network anomaly detection with the restricted Boltzmann machine, Neurocomputing, 122, pp. 13-23, (2013)
- [2] Yadav S., Subramanian S., Detection of application layer DDoS attack by feature learning using stacked AutoEncoder, Proceedings of 2016 International Conference on Computational Techniques in Information and Communication Technologies, pp. 361-366, (2016)
- [3] Yin C.L., Zhu Y.F., Fei J.L., Et al., A deep learning approach for intrusion detection using recurrent neural networks, IEEE Access, 5, pp. 21954-21961, (2017)
- [4] Yuan X.Y., Li C.H., Li X.L., DeepDefense: Identifying DDoS attack via deep learning, Proceedings of 2017 IEEE International Conference on Smart Computing, pp. 1-8, (2017)
- [5] Li Z.P., Qin Z., Huang K., Et al., Intrusion detection using convolutional neural networks for representation learning, Neural Information Processing, pp. 858-866, (2017)
- [6] Wang W., Sheng Y.Q., Wang J.L., Et al., HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection, IEEE Access, 6, pp. 1792-1806, (2018)
- [7] Moustafa N., Slay J., UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set), Proceedings of 2015 Military Communications and Information Systems Conference, pp. 1-6, (2015)
- [8] Moustafa N., Slay J., The evaluation of network anomaly detection systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set, Information Systems Security, 25, 1-3, pp. 18-31, (2016)
- [9] Bouvrie J., Notes on convolutional neural networks, (2006)
- [10] Szegedy C., Liu W., Jia Y.Q., Et al., Going deeper with convolutions, Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, (2015)