SCSQ-Net: A Shared Kernel Point Convolution Semantic Query Network for Weakly Supervised Classification of Multispectral LiDAR Point Clouds

被引:0
|
作者
Chen, Ke [1 ]
Guan, Haiyan [2 ,3 ]
Yu, Yongtao [4 ]
Wang, Lanying [5 ]
Liu, Jiacheng [1 ]
Zang, Yufu [1 ]
Wen, Chenglu [6 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Remote Sensing & Geomat Engn, Minist Nat Resources, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Technol Innovat Ctr Integrat Applicat Remote Sensi, Minist Nat Resources, Nanjing 210044, Peoples R China
[4] Huaiyin Inst Technol, Fac Comp & Software Engn, Huaian 223003, Peoples R China
[5] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[6] Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen 361005, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Point cloud compression; Semantics; Kernel; Convolution; Feature extraction; Training; Laser radar; Nearest neighbor methods; Remote sensing; Labeling; Dropout activation; kernel point convolution; multispectral LiDAR (MS-LiDAR); point cloud classification; weakly supervised network; SEGMENTATION;
D O I
10.1109/TGRS.2024.3506016
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multispectral LiDAR (MS-LiDAR) point cloud classification holds great potential, but current methods rely heavily on fully supervised learning, requiring costly manual labeling. To address this, we propose a shared convolutional semantic query network (SCSQ-Net), a novel weakly supervised model designed for airborne MS-LiDAR data. It utilizes a shared kernel point convolution (SKPC) backbone to integrate neighborhood information during both encoding and semantic inference. An adaptive dropout activation (ADA) module is introduced to further enhance activation and feature learning across the entire point cloud scene. Our loss strategy combines point affinity loss, weighted cross-entropy loss, and Lovasz-Softmax loss for comprehensive supervision. Evaluated on two large datasets, the SCSQ-Net demonstrated performance comparable to fully supervised models, achieving an average $F1$ -score of 86.83%, an intersection over union (mIoU) of 80.71%, and overall accuracy (OA) of 96.29% using only 0.1% labeled data.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] Weakly-Supervised Semantic Segmentation of ALS Point Clouds Based on Auxiliary Line and Plane Point Prediction
    Chen, Jintao
    Zhang, Yan
    Ma, Feifan
    Huang, Kun
    Tan, Zhuangbin
    Qi, Yuanjie
    Li, Jing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18096 - 18111
  • [2] A Multispectral LiDAR Point Cloud Classification Method based on Enhanced Features Kernel Point Convolutional Network
    Chen K.
    Guan H.
    Lei X.
    Cao S.
    Journal of Geo-Information Science, 2023, 25 (05) : 1075 - 1087
  • [3] LPRnet: A Self-Supervised Registration Network for LiDAR and Photogrammetric Point Clouds
    Wang, Chen
    Gu, Yanfeng
    Li, Xian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [4] Masking Graph Cross-Convolution Network for Multispectral Point Cloud Classification
    Wang, Qingwang
    Chen, Xueqian
    Zhang, Zifeng
    Meng, Yuanqin
    Shen, Tao
    Gu, Yanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [5] SQL-Net: Semantic Query Learning for Point-Supervised Temporal Action Localization
    Wang, Yu
    Zhao, Shengjie
    Chen, Shiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 84 - 94
  • [6] Adaptive Multiscale Feature Extraction in a Distributed System for Semantic Classification of Airborne LiDAR Point Clouds
    Singh, Satendra
    Sreevalsan-Nair, Jaya
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] WSSIC-Net: Weakly-Supervised Semantic Instance Completion of 3D Point Cloud Scenes
    Fu, Zhiheng
    Guo, Yulan
    Chen, Minglin
    Hu, Qingyong
    Laga, Hamid
    Boussaid, Farid
    Bennamoun, Mohammed
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 2008 - 2019
  • [8] Airborne multispectral LiDAR point cloud classification with a feature Reasoning-based graph convolution network
    Zhao, Peiran
    Guan, Haiyan
    Li, Dilong
    Yu, Yongtao
    Wang, Hanyun
    Gao, Kyle
    Marcato Junior, Jose
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 105
  • [9] A joint deep learning network of point clouds and multiple views for roadside object classification from lidar point clouds
    Fang, Lina
    You, Zhilong
    Shen, Guixi
    Chen, Yiping
    Li, Jianrong
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 193 : 115 - 136
  • [10] EDT-Net: A Lightweight Tunnel Water Leakage Detection Network Based on LiDAR Point Clouds Intensity Images
    Liu, Zhenyu
    Gao, Xianjun
    Yang, Yuanwei
    Xu, Lei
    Wang, Shaoning
    Chen, Ningsheng
    Wang, Zhiwei
    Kou, Yuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 7334 - 7346