Oxygen-defective ruthenium oxide as an efficient and durable electrocatalyst for acidic oxygen evolution reaction

被引:1
作者
Wang, Jingwei [1 ,2 ]
Cai, Lejuan [1 ]
Yu, Zhipeng [1 ]
Tan, Hao [1 ]
Xiang, Xinyi [1 ]
Xu, Kaiyang [1 ]
Chao, Yang [1 ]
Thalluri, Sitaramanjaneya Mouli [3 ]
Lin, Fei [1 ]
Huang, Haoliang [1 ]
Zhang, Chenyue [1 ]
Zhao, Yang [1 ]
Wang, Wenlong [1 ,2 ]
Liu, Lifeng [1 ]
机构
[1] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100090, Peoples R China
[3] Int Iberian Nanotechnol Lab INL, P-4715330 Braga, Portugal
基金
中国国家自然科学基金;
关键词
DISSOLUTION; OXIDATION;
D O I
10.1039/d4ta06592a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for green hydrogen production in combination with renewable energy. However, the high cost and, particularly, the scarcity of iridium (Ir) for use as oxygen evolution reaction (OER) catalysts in the anode severely impede large-scale deployment of PEMWE. Herein, we report the synthesis of oxygen-defective ruthenium oxide (HP-RuOx), which can serve as a cost-effective alternative to Ir-based catalysts, showing outstanding electrocatalytic performance for acidic OER. HP-RuOx was obtained through a sol-gel process using hexamethylenetetramine (HMTA) and polyvinylpyrrolidone (PVP) as co-surfactants. The defect-rich nature of HP-RuOx proves to be effective in enhancing the catalytic activity toward acidic OER. Specifically, HP-RuOx exhibits an overpotential of only 237 mV at a current density of 10 mA cm-2 in 0.05 M H2SO4, outperforming commercial RuO2 and other RuOx control catalysts. Both in situ differential electrochemical mass spectrometry (DEMS) studies and theoretical calculations reveal that the OER occurring on HP-RuOx proceeds predominantly through the adsorbate evolution mechanism (AEM) and the lattice oxygen barely participates in the OER. Consequently, the defect-rich HP-RuOx demonstrates good electrocatalytic stability in 0.05 M H2SO4, with only a 90 mV potential increase after 140 hours of OER at 100 mA cm-2. Furthermore, the performance of HP-RuOx is also evaluated in membrane electrode assemblies (MEAs), which can reach 1 A cm-2 at 1.60 V at 60 degrees C and stably operate at 0.5 A cm-2 for 230 hours with minimal degradation, showing substantial potential for use as an efficient and durable OER catalyst in PEMWE.
引用
收藏
页码:312 / 324
页数:13
相关论文
共 83 条
[21]   Oxidation State and Oxygen-Vacancy-Induced Work Function Controls Bifunctional Oxygen Electrocatalytic Activity [J].
Gayen, Pralay ;
Saha, Sulay ;
Bhattacharyya, Kaustava ;
Ramani, Vijay K. .
ACS CATALYSIS, 2020, 10 (14) :7734-7746
[22]   Ultrafine Defective RuO2 Electrocatayst Integrated on Carbon Cloth for Robust Water Oxidation in Acidic Media [J].
Ge, Ruixiang ;
Li, Lei ;
Su, Jianwei ;
Lin, Yichao ;
Tian, Ziqi ;
Chen, Liang .
ADVANCED ENERGY MATERIALS, 2019, 9 (35)
[23]   The stability number as a metric for electrocatalyst stability benchmarking [J].
Geiger, Simon ;
Kasian, Olga ;
Ledendecker, Marc ;
Pizzutilo, Enrico ;
Mingers, Andrea M. ;
Fu, Wen Tian ;
Diaz-Morales, Oscar ;
Li, Zhizhong ;
Oellers, Tobias ;
Fruchter, Luc ;
Ludwig, Alfred ;
Mayrhofer, Karl J. J. ;
Koper, Marc T. M. ;
Cherevko, Serhiy .
NATURE CATALYSIS, 2018, 1 (07) :508-515
[24]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]
[25]   Defect Engineering of RuO2 Aerogel for Efficient Acidic Water Oxidation [J].
Han, Xiang ;
Jin, Mengyuan ;
Chen, Tingting ;
Chou, Ting ;
Chen, Jiadong ;
Wang, Shun ;
Yang, Yun ;
Wang, Juan ;
Jin, Huile .
ACS MATERIALS LETTERS, 2024, 6 (03) :748-755
[26]   Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity [J].
Hao, Shaoyun ;
Liu, Min ;
Pan, Junjie ;
Liu, Xiangnan ;
Tan, Xiaoli ;
Xu, Nan ;
He, Yi ;
Lei, Lecheng ;
Zhang, Xingwang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[27]   Unusual double ligand holes as catalytic active sites in LiNiO2 [J].
Huang, Haoliang ;
Chang, Yu-Chung ;
Huang, Yu-Cheng ;
Li, Lili ;
Komarek, Alexander C. ;
Tjeng, Liu Hao ;
Orikasa, Yuki ;
Pao, Chih-Wen ;
Chan, Ting-Shan ;
Chen, Jin-Ming ;
Haw, Shu-Chih ;
Zhou, Jing ;
Wang, Yifeng ;
Lin, Hong-Ji ;
Chen, Chien-Te ;
Dong, Chung-Li ;
Kuo, Chang-Yang ;
Wang, Jian-Qiang ;
Hu, Zhiwei ;
Zhang, Linjuan .
NATURE COMMUNICATIONS, 2023, 14 (01)
[28]   Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation [J].
Jin, Haneul ;
Choi, Songa ;
Bang, Gi Joo ;
Kwon, Taehyun ;
Kim, Hee Soo ;
Lee, Su Ji ;
Hong, Yongju ;
Lee, Dong Wook ;
Park, Hyun S. ;
Baik, Hionsuck ;
Jung, Yousung ;
Yoo, Sung Jong ;
Lee, Kwangyeol .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :1119-1130
[29]   Design strategies of electrocatalysts for acidic oxygen evolution reaction [J].
Kaushik, Shubham ;
Xiao, Xin ;
Xu, Qiang .
ENERGYCHEM, 2023, 5 (05)
[30]   Role of Dissolution Intermediates in Promoting Oxygen Evolution Reaction at RuO2(110) Surface [J].
Klyukin, Konstantin ;
Zagalskaya, Alexandra ;
Alexandrov, Vitaly .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36) :22151-22157