Controlled wrinkling as a novel method for the fabrication of patterned surfaces

被引:0
作者
Schweikart A. [1 ]
Horn A. [1 ]
Böker A. [1 ]
Fery A. [1 ]
机构
[1] Physical Chemistry Department II, University of Bayreuth
关键词
Arrays; Assembled monolayers; Buckling instability; Colloidal crystallization; Deformation; Elastomeric polymer; Mechanical-properties; Patterns; Polydimethylsiloxane; Polyelectrolytemultilayer films; Polymer brushes; Self-assembly; Soft lithography; Surfaces; Thin-film; Thin-films; Tobaccomosaic-virus; wrinkling;
D O I
10.1007/12-2009-22
中图分类号
学科分类号
摘要
This contribution reviews recent findings on nonlithographic approaches for topographical structuring of polymeric surfaces and application of the resulting surfaces for creating hierarchical structures. External mechanical fields are used to induce a so-called buckling instability, which causes the formation of wrinkles with well-defined wavelength. We introduce the theoretical foundations of the phenomenon. The universality of the principle and the range of wavelengths between fractions of a micrometer and hundreds of microns that can be achieved are discussed. In the following we focus on the application of these surfaces as templates for the deposition of colloidal particles such as artificial particles (polystyrene beads, gold-nanoparticles or polymeric core-shell particles) and bionanoparticles (tobacco mosaic virus). We demonstrate how patterns can be transferred from the supporting wrinkled surfaces onto a broad variety of flat surfaces like glass or silicon wafers by stamping, where the complex colloidal patterns are accessible for studying their optical, electronic or other physical properties. © Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:75 / 99
页数:24
相关论文
共 97 条
[1]  
Hoogenboom J.P., Retif C., De Bres E., De Boer M.V., Van Langen-Suurling A.K., Romijn J., Van Blaaderen A., Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation, Nano Lett, 4, pp. 205-208, (2004)
[2]  
Hoogenboom J.P., Van Langen-Suurling A.K., Romijn J., Van Blaaderen A., Hard-sphere crystals with hcp and non-close-packed structure grown by colloidal epitaxy, Phys Rev Lett, 90, pp. 1-4, (2003)
[3]  
Hoogenboom J.P., Van Langen-Suurling A.K., Romijn J., Van Blaaderen A., Epitaxial growth of a colloidal hard-sphere hcp crystal and the effects of epitaxial mismatch on crystal structure, Phys Rev e, 69, pp. 051602-051617, (2004)
[4]  
Hynninen A.P., Jhj T., Ecm V., Dijkstra M., Van Blaaderen A., Self-assembly route for photonic crystals with a bandgap in the visible region, Nat Mater, 6, pp. 202-205, (2007)
[5]  
Van Blaaderen A., Colloids under external control, MRS Bull, 29, pp. 85-90, (2004)
[6]  
Van Blaaderen A., Hoogenboom J.P., Dlj V., Yethiraj A., Van Der Horst A., Visscher K., Dogterom M., Colloidal epitaxy: Playing with the boundary conditions of colloidal crystallization, Faraday Discuss, 123, pp. 107-119, (2003)
[7]  
Dlj V., Fific D., Penninkhof J., Van Dillen T., Polman A., Van Blaaderen A., Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography, Nano Lett, 5, pp. 1175-1179, (2005)
[8]  
Bechert D.W., Bruse M., Hage W., Experiments with three-dimensional riblets as an idealized model of shark skin, Exp Fluids, 28, pp. 403-412, (2000)
[9]  
Reif W.E., Morphology and hydrodynamic effects of the scales of fast swimming sharks, Fortschr Zool, 30, pp. 483-485, (1985)
[10]  
Wainwright S.A., Vosburgh F., Hebrank J.H., Shark skin-function in locomotion, Science, 202, pp. 747-749, (1978)