Maximum principle for the time-space fractional diffusion equations

被引:0
作者
Wang, Jingyu [1 ,2 ]
Yan, Zaizai [1 ]
Zhao, Yang [3 ]
Lv, Zhihan [4 ]
机构
[1] Science College, Inner Mongolia University of Technology, Hohhot, Inner Mongolia
[2] Science College, Qiqihaer University, Qiqihaer, Heilongjiang
[3] Department of Electronic and Information Technology, Jiangmen Polytechnic, Jiangmen
[4] Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong
关键词
Extreme points; Fractional diffusion equations; Initial-Boundary-Value problems; Maximum principle; Riemann liouville fractional derivative;
D O I
10.1166/jctn.2015.4696
中图分类号
O172 [微积分];
学科分类号
摘要
Recently, with the development of fractional differential equations (FDEs), the maximum principles for FDEs are still an open problem. In this paper, we will consider a family of the space-time Riemmann-Liouville fractional differential equations over an open bounded domain. In order to derive the maximum principles for space-time Riemmann-Liouville fractional differential equations, the Riemann-Liouville fractional derivatives at extreme points was discussed and established. Then, the maximum principles were proved by applying those results. Finally, maximum principles are employed to show that the initial-boundary-value problem for the possesses at most one solution and this solution continuously depends on the initial condition. © 2015 American Scientific Publishers.
引用
收藏
页码:5636 / 5640
页数:4
相关论文
共 17 条
[1]  
Al-Refai M., Luchko Y.F., Fract. Calc. Appl. Anal., 17, (2014)
[2]  
BAleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional Calculus Models and Numerical Methods, (2012)
[3]  
Fujishiro K., Yamamoto M., Appl. Anal., 93, (2014)
[4]  
Li G.S., Zhang D.L., Jia X.Z., Yamamoto M., Inverse Prob., 29, (2013)
[5]  
Liu J.J., Yamamoto M., Yan L., Appl. Numer. Math., 87, (2015)
[6]  
Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., Nonlinear Dynam., 80, (2015)
[7]  
Wu G.C., Baleanu D., Zeng S.D., Phys. Lett. A, 378, (2014)
[8]  
Baleanu D., Rezapour S., Salehi S., J. Comput. Anal. Appl., 19, (2015)
[9]  
Yang X.J., Baleanu D., Khan Y., Mohyud D., Romanian J. Phys., 59, (2014)
[10]  
Yang X.J., Srivastava H.M., He J.H., Baleanu D., Phys. Lett. A, 377, (2013)