Spin Hall Effect of Laguerre-Gaussian and Bessel-Gaussian Beams Superimposed with Linearly Polarized Beams

被引:0
作者
Kovalev, A. A. [1 ,2 ]
Kotlyar, V. V. [1 ,2 ]
机构
[1] NRC Kurchatov Inst, Image Proc Syst Inst, Samara 443001, Russia
[2] Samara Natl Res Univ, Samara 443086, Russia
基金
俄罗斯科学基金会;
关键词
spin Hall effect; cylindrical polarization; linear polarization; beam power; ANGULAR-MOMENTUM; LIGHT; SHIFT;
D O I
10.3103/S1060992X24700346
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the spin angular momentum of a superposition of two vector light beams with rotational symmetry. One beam is cylindrically polarized and another is linearly polarized. Radial form of these beams can be arbitrary (Laguerre-Gaussian, Bessel-Gaussian, or some other). For such a superposition, an analytical expression is derived for the spin angular momentum and two its properties are obtained. At first, we found that altering the coefficients does not affect the form of the spin angular momentum distribution, while the intensity distribution is changed. At second, we found that maximal spin angular momentum is generated if both beams are of equal power.
引用
收藏
页码:S98 / S104
页数:7
相关论文
共 23 条
[1]   Polarization singularities: Topological and dynamical aspects [J].
Angelsky, O. V. ;
Mokhun, I. I. ;
Bekshaev, A. Ya. ;
Zenkova, C. Yu. ;
Zheng, J. .
FRONTIERS IN PHYSICS, 2023, 11
[2]   Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams [J].
Angelsky, O. V. ;
Bekshaev, A. Ya ;
Maksimyak, P. P. ;
Maksimyak, A. P. ;
Hanson, S. G. ;
Zenkova, C. Yu .
OPTICS EXPRESS, 2012, 20 (04) :3563-3571
[3]  
BARANOVA NB, 1994, JETP LETT+, V59, P232
[4]   Geometrical optics of beams with vortices: Berry phase and orbital angular momentum Hall effect [J].
Bliokh, Konstantin Yu. .
PHYSICAL REVIEW LETTERS, 2006, 97 (04)
[5]   Bessel-modulated Gaussian beams with quadratic radial dependence [J].
Caron, CFR ;
Potvliege, RM .
OPTICS COMMUNICATIONS, 1999, 164 (1-3) :83-93
[6]   Spin-Orbit Optical Hall Effect [J].
Fu, Shenhe ;
Guo, Chaoheng ;
Liu, Guohua ;
Li, Yongyao ;
Yin, Hao ;
Li, Zhen ;
Chen, Zhenqiang .
PHYSICAL REVIEW LETTERS, 2019, 123 (24)
[7]  
Goodman J., 1996, Introduction To Fourier Optics
[8]   BESSEL-GAUSS BEAMS [J].
GORI, F ;
GUATTARI, G ;
PADOVANI, C .
OPTICS COMMUNICATIONS, 1987, 64 (06) :491-495
[9]   Combined half-integer Bessel-like beams: A set of solutions of the wave equation [J].
Hebri, Davud ;
Rasouli, Saifollah .
PHYSICAL REVIEW A, 2018, 98 (04)
[10]   Vectorial spin Hall effect of light upon tight focusing [J].
Khonina, Svetlana N. ;
Golub, Ilya .
OPTICS LETTERS, 2022, 47 (09) :2166-2169