Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

被引:2
|
作者
Sabo, Eric [1 ]
Aloshious, Arun B. [2 ]
Brown, Kenneth R. [2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[4] Duke Univ, Dept Phys, Durham, NC 27708 USA
[5] Duke Univ, Dept Chem, Durham, NC 27708 USA
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2024年 / 5卷
基金
美国国家科学基金会;
关键词
Codes; Maximum likelihood decoding; Qubit; Color; Image color analysis; Colored noise; Error correction codes; Quantum error correction; Trellis decoding; LINEAR CODES; BLOCK-CODES; COMPLEXITY;
D O I
10.1109/TQE.2024.3401857
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the structural properties of the decoding graph may be computed. The resulting formalism is valid for any prime-dimensional quantum system. The modified decoder works for any stabilizer code S and separates into two parts: 1) a one-time offline computation that builds a compact graphical representation of the normalizer of the code, S perpendicular to and 2) a quick, parallel, online query of the resulting vertices using the Viterbi algorithm. We show the utility of trellis decoding by applying it to four high-density length-20 stabilizer codes for depolarizing noise and the well-studied Steane, rotated surface, and 4.8.8/6.6.6 color codes for Z only noise. Numerical simulations demonstrate a 20% improvement in the code-capacity threshold for color codes with boundaries by avoiding the mapping from color codes to surface codes. We identify trellis edge number as a key metric of difficulty of decoding, allowing us to quantify the advantage of single-axis (X or Z) decoding for Calderbank-Steane-Shor codes and block decoding for concatenated codes.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Qudit stabilizer codes, CFTs, and topological surfaces
    Buican, Matthew
    Radhakrishnan, Rajath
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [2] Error-rate-agnostic decoding of topological stabilizer codes
    Hammar, Karl
    Orekhov, Alexei
    Hybelius, Patrik Wallin
    Wisakanto, Anna Katariina
    Srivastava, Basudha
    Kockum, Anton Frisk
    Granath, Mats
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [3] Narain CFTs from qudit stabilizer codes
    Kawabata, Kohki
    Nishioka, Tatsuma
    Okuda, Takuya
    SCIPOST PHYSICS CORE, 2023, 6 (02): : 1 - 43
  • [4] Entanglement-assisted fault-tolerant encoding and decoding for qudit stabilizer codes
    Sharma, Abhi Kumar
    Garani, Shayan Srinivasa
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [5] Fast decoders for qudit topological codes
    Anwar, Hussain
    Brown, Benjamin J.
    Campbell, Earl T.
    Browne, Dan E.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] Trellis decoding of some decomposable codes
    Altay, G
    Yalçin, S
    Uçan, ON
    RAST 2003: RECENT ADVANCES IN SPACE TECHNOLOGIES, PROCEEDINGS, 2003, : 667 - 669
  • [7] Trellis decoding of linear block codes
    Univ of Pretoria, Pretoria, South Africa
    Proc S Afr Symp Commun Signal Process, (171-174):
  • [8] TRELLIS STRUCTURES OF BLOCK CODES AND THEIR DECODING
    Ma Jianfeng Wang Yumin Lei Zhenjia(Dept. of Comput. Sci.
    JournalofElectronics(China), 1997, (03) : 241 - 246
  • [9] Trellis decoding of linear block codes
    Büttner, WH
    Staphorst, L
    Linde, LP
    PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 171 - 174
  • [10] Differential trellis decoding of convolutional codes
    Fossorier, MPC
    Lin, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 1046 - 1053