Bilayer one-dimensional Convection-Diffusion-Reaction-Source problem: Analytical and numerical solution

被引:2
|
作者
Umbricht, Guillermo Federico [1 ,2 ]
Rubio, Diana [3 ]
Tarzia, Domingo Alberto [1 ,2 ]
机构
[1] Univ Austral, Fac Ciencias Empresariales, Dept Matemat, Paraguay 1950 S2000FZF, Rosario, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn CONICET, C1425FQB, RA-2290 Godoy Cruz, Buenos Aires, Argentina
[3] Univ Nacl Gen San Martin, Escuela Ciencia & Tecnol, Ctr Matemat Aplicada, Inst Tecnol Emergentes & Ciencias Aplicadas UNSAM, 25 Mayo & Francia B1650, San Martin, Buenos Aires, Argentina
关键词
Heat transfer; Multilayer; Composite materials; Interfacial thermal resistance; TRANSIENT HEAT-CONDUCTION; FUNDAMENTAL-SOLUTIONS; THERMAL RUNAWAY; MODEL; CONTAMINATION; TEMPERATURE; GROUNDWATER; TRANSPORT; SLAB;
D O I
10.1016/j.ijthermalsci.2024.109471
中图分类号
O414.1 [热力学];
学科分类号
摘要
This article presents a theoretical analysis of a one-dimensional heat transfer problem in two layers involving diffusion, advection, internal heat generation or loss linearly dependent on temperature in each layer, and heat generation due to external sources. Additionally, the thermal resistance at the interface between the materials is considered. The situation of interest is modeled mathematically, explicit analytical solutions are found using Fourier techniques, and a convergent finite difference scheme is formulated to simulate specific cases. The solution is consistent with previous results. A numerical example is included that shows coherence between the obtained results and the physics of the problem. The conclusions drawn in this work expand the theoretical understanding of two-layer heat transfer and may also contribute to improving the thermal design of multilayer engineering systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation
    Cheng, Jin
    Nakagawa, Junichi
    Yamamoto, Masahiro
    Yamazaki, Tomohiro
    INVERSE PROBLEMS, 2009, 25 (11)
  • [22] An Inverse Problem for One-dimensional Diffusion Equation in Optical Tomography
    Addam, Mohamed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (03): : 159 - 194
  • [23] One-dimensional Diffusion Problem with not Strengthened Regular Boundary Conditions
    Orazov, I.
    Sadybekov, M. A.
    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690
  • [24] One-Dimensional Transient Analytical Solution for Gas Pressure in Municipal Solid Waste Landfills
    Li, Yu-Chao
    Zheng, Jian
    Chen, Yun-Min
    Guo, Ru-Yang
    JOURNAL OF ENVIRONMENTAL ENGINEERING, 2013, 139 (12) : 1441 - 1445
  • [25] An Analytical Solution to the One-Dimensional Unsteady Temperature Field near the Newtonian Cooling Boundary
    Ren, Honglei
    Tao, Yuezan
    Wei, Ting
    Kang, Bo
    Li, Yucheng
    Lin, Fei
    AXIOMS, 2023, 12 (01)
  • [26] Analytical solution for the coupled heat and mass transfer formulation of one-dimensional drying kinetics
    Garcia del Valle, J.
    Sierra Pallares, J.
    JOURNAL OF FOOD ENGINEERING, 2018, 230 : 99 - 113
  • [27] Numerical solving the one-dimensional problem of drying a grass layer
    I. A. Shmakov
    Optoelectronics, Instrumentation and Data Processing, 2007, 43 (2) : 198 - 203
  • [28] One-dimensional Solution of Hygrothermoelastic Rod Problem by Laplace Transformation
    Ailawalia, Praveen
    Elshazly, Ibrahim S.
    Halouani, Borhen
    Tyagi, Harshit
    Elidy, E. S.
    Lotfy, Khaled
    MECHANICS OF SOLIDS, 2024, 59 (08) : 4114 - 4128
  • [29] Numerical solution to a one-dimensional nonlinear problem of heat wave propagation in a rigid thermal conducting slab
    N H Sweilam
    A F Ghaleb
    M S Abou-Dina
    M M Abou Hasan
    S M AL-Mekhlafi
    E K Rawy
    Indian Journal of Physics, 2022, 96 : 223 - 232
  • [30] Numerical solution to a one-dimensional nonlinear problem of heat wave propagation in a rigid thermal conducting slab
    Sweilam, N. H.
    Ghaleb, A. F.
    Abou-Dina, M. S.
    Hasan, M. M. Abou
    Al-Mekhlafi, S. M.
    Rawy, E. K.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (01) : 223 - 232