共 38 条
- [1] Somasundaram A., Reddy U.S., Data imbalance: Effects solutions for classification of large highly imbalanced data, Proc. Int. Conf. Res. Eng., Comput., Technol, pp. 1-16, (2016)
- [2] Fernandez A., Garcia S., Galar M., Prati R.C., Krawczyk B., Herrera F., Learning From Imbalanced Data Sets, 10, (2018)
- [3] Khushi M., Et al., A comparative performance analysis of data resampling methods on imbalance medical data, IEEE Access, 9, pp. 109960-109975, (2021)
- [4] Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., Smote: Synthetic minority over-sampling technique, J. Artif. Intell. Res, 16, pp. 321-357, (2002)
- [5] Fernandez A., Garcia S., Herrera F., Chawla N.V., Smote for learning from imbalanced data: Progress challenges, marking the 15-year anniversary, J. Artif. Intell. Res, 61, pp. 863-905, (2018)
- [6] Kingma D.P., Welling M., Auto-encoding variational Bayes, (2013)
- [7] Goodfellow I., Et al., Generative adversarial nets, Proc. 27th Int. Conf. Neural Inf. Process. Syst, 27, pp. 2672-2680, (2014)
- [8] Pan Z., Et al., Loss functions of generative adversarial networks (GANs): Opportunities challenges, IEEE Trans. Emerg. Topics Comput. Intell, 4, 4, pp. 500-522, (2020)
- [9] Lin T.-Y., Goyal P., Girshick R., He K., Dollar P., Focal loss for dense object detection, Proc. IEEE Int. Conf. Comput. Vis, pp. 2980-2988, (2017)
- [10] Li X., Sun X., Meng Y., Liang J., Wu F., Li J., Dice loss for data-imbalanced NLP tasks, Proc. 58th Annu. Meet. Assoc. Computat. Linguist, pp. 465-476, (2020)