Automatic COVID-19 prediction using explainable machine learning techniques

被引:0
作者
Solayman S. [1 ]
Aumi S.A. [1 ]
Mery C.S. [1 ]
Mubassir M. [1 ]
Khan R. [1 ]
机构
[1] Electrical and Computer Engineering, North South University, Dhaka
来源
International Journal of Cognitive Computing in Engineering | 2023年 / 4卷
关键词
CNN-LSTM; COVID-19; Deep learning; Explainable AI; Hyperparameter optimization; Machine learning; Support vector machine; Webpage;
D O I
10.1016/j.ijcce.2023.01.003
中图分类号
学科分类号
摘要
The coronavirus is considered this century's most disruptive catastrophe and global concern. This disease has prompted extreme social, psychological and economic impacts affecting millions of people around the globe. COVID-19 is transmitted from one infected person's body to another through respiratory droplets. This virus proliferates when people breathe in air-contaminated space with droplets and microscopic airborne particles. This research aims to analyze automatic COVID-19 detection using machine learning techniques to build an intelligent web application. The dataset has been preprocessed by dropping null values, feature engineering, and synthetic oversampling (SMOTE) techniques. Next, we trained and evaluated different classifiers, i.e., logistic regression, random forest, decision tree, k-nearest neighbor, support vector machine (SVM), ensemble models (adaptive boosting and extreme gradient boosting) and deep learning (artificial neural network, convolutional neural network and long short-term memory) techniques. Explainable AI with the LIME framework has been applied to interpret the prediction results. The hybrid CNN-LSTM algorithm with the SMOTE approach performed better than the other models on the employed open-source dataset obtained from the Israeli Ministry of Health website, with 96.34% accuracy and a 0.98 F1 score. Finally, this model was chosen to deploy the proposed prediction system to a website, where users may acquire an instantaneous COVID-19 prognosis based on their symptoms. © 2023 The Authors
引用
收藏
页码:36 / 46
页数:10
相关论文
共 50 条
  • [1] COVID-19 Mortality Prediction Using Machine Learning Techniques
    Schirato, Lindsay
    Makina, Kennedy
    Flanders, Dwayne
    Pouriyeh, Seyedamin
    Shahriar, Hossain
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 197 - 202
  • [2] COVID-19 and Suicide Tendency: Prediction and Risk Factor Analysis Using Machine Learning and Explainable AI
    Biplob K.B.B.
    Sammak M.H.
    Bitto A.K.
    Mahmud I.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [3] Applying Different Machine Learning Techniques for Prediction of COVID-19 Severity
    Sayed, Safynaz Abdel-Fattah
    Elkorany, Abeer Mohamed
    Mohammad, Sabah Sayed
    IEEE ACCESS, 2021, 9 : 135697 - 135707
  • [4] COVID-19 Outbreak Prediction with Machine Learning
    Ardabili, Sina F.
    Mosavi, Amir
    Ghamisi, Pedram
    Ferdinand, Filip
    Varkonyi-Koczy, Annamaria R.
    Reuter, Uwe
    Rabczuk, Timon
    Atkinson, Peter M.
    ALGORITHMS, 2020, 13 (10)
  • [5] COVID-19 Prediction model using Machine Learning
    Jadi, Amr
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (08): : 247 - 253
  • [6] Practical Machine Learning Techniques for COVID-19 Detection Using Chest
    Mangalmurti, Yurananatul
    Wattanapongsakorn, Naruemon
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 34 (02) : 733 - 752
  • [7] Explainable Machine Learning for Early Assessment of COVID-19 Risk Prediction in Emergency Departments
    Casiraghi, Elena
    Malchiodi, Dario
    Trucco, Gabriella
    Frasca, Marco
    Cappelletti, Luca
    Fontana, Tommaso
    Esposito, Alessandro Andrea
    Avola, Emanuele
    Jachetti, Alessandro
    Reese, Justin
    Rizzi, Alessandro
    Robinson, Peter N.
    Valentini, Giorgio
    IEEE ACCESS, 2020, 8 (08): : 196299 - 196325
  • [8] Contemporary Study for Detection of COVID-19 Using Machine Learning with Explainable AI
    Akbar, Saad
    Azam, Humera
    Almutairi, Sulaiman Sulmi
    Alqahtani, Omar
    Shah, Habib
    Aleryani, Aliya
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1075 - 1104
  • [9] Explainable Machine-Learning Models for COVID-19 Prognosis Prediction Using Clinical, Laboratory and Radiomic Features
    Prinzi, Francesco
    Militello, Carmelo
    Scichilone, Nicola
    Gaglio, Salvatore
    Vitabile, Salvatore
    IEEE ACCESS, 2023, 11 : 121492 - 121510
  • [10] Early Prediction of ICU Admission Within COVID-19 Patients Using Machine Learning Techniques
    Maouche, Ikram
    Terrissa, Sadek Labib
    Benmohammed, Karima
    Zerhouni, Noureddine
    Boudaira, Safia
    6TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS, 2022, 393 : 507 - 517