SFNet: Spatial and Frequency Domain Networks for Wide-Field OCT Angiography Retinal Vessel Segmentation

被引:3
作者
Li, Sien [1 ]
Ma, Fei [1 ]
Yan, Fen [2 ]
Dong, Xiwei [3 ]
Guo, Yanfei [1 ]
Meng, Jing [1 ]
Liu, Hongjuan [1 ]
机构
[1] Qufu Normal Univ, Sch Comp Sci, Rizhao, Shandong, Peoples R China
[2] Qufu Peoples Hosp, Ultrasound Med Dept, Qufu, Shandong, Peoples R China
[3] Jiujiang Univ, Sch Comp & Big Data Sci, Jiujiang, Jiangxi, Peoples R China
关键词
deep learning; OCT-angiography; retinal image segmentation; segmentation; IMAGE SEGMENTATION; 3D;
D O I
10.1002/jbio.202400420
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Automatic segmentation of blood vessels in fundus images is important to assist ophthalmologists in diagnosis. However, automatic segmentation for Optical Coherence Tomography Angiography (OCTA) blood vessels has not been fully investigated due to various difficulties, such as vessel complexity. In addition, there are only a few publicly available OCTA image data sets for training and validating segmentation algorithms. To address these issues, we constructed a wild-field retinal OCTA segmentation data set, the Retinal Vessels Images in OCTA (REVIO) dataset. Second, we propose a new retinal vessel segmentation network based on spatial and frequency domain networks (SFNet). The proposed model are tested on three benchmark data sets including REVIO, ROSE and OCTA-500. The experimental results show superior performance on segmentation tasks compared to the representative methods.
引用
收藏
页数:12
相关论文
共 43 条
[1]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[2]  
Ahn J., 2024, IEEE T IND INFORM, V20, P1
[3]   Event-Triggered Multigradient Recursive Reinforcement Learning Tracking Control for Multiagent Systems [J].
Bai, Weiwei ;
Li, Tieshan ;
Long, Yue ;
Chen, C. L. Philip .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) :366-379
[4]   Optical Coherence Tomography Angiography and Corresponding Histology [J].
Bottazzi, Leonardo ;
Montesel, Andrea ;
Querques, Giuseppe .
JAMA OPHTHALMOLOGY, 2023, 141 (04) :403-404
[5]   Robust Vessel Segmentation in Fundus Images [J].
Budai, A. ;
Bock, R. ;
Maier, A. ;
Hornegger, J. ;
Michelson, G. .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013 (2013)
[6]   Recent advances and clinical applications of deep learning in medical image analysis [J].
Chen, Xuxin ;
Wang, Ximin ;
Zhang, Ke ;
Fung, Kar-Ming ;
Thai, Theresa C. ;
Moore, Kathleen ;
Mannel, Robert S. ;
Liu, Hong ;
Zheng, Bin ;
Qiu, Yuchen .
MEDICAL IMAGE ANALYSIS, 2022, 79
[7]   Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion [J].
Deng, Xin ;
Dragotti, Pier Luigi .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) :3333-3348
[8]   RepMLPNet: Hierarchical Vision MLP with Re-parameterized Locality [J].
Ding, Xiaohan ;
Chen, Honghao ;
Zhang, Xiangyu ;
Han, Jungong ;
Ding, Guiguang .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :568-577
[9]  
etiner H., 2023, J KING SAUD UNIV-COM, V35
[10]   ResAt-UNet: A U-Shaped Network Using ResNet and Attention Module for Image Segmentation of Urban Buildings [J].
Fan, Zhiyong ;
Liu, Yu ;
Xia, Min ;
Hou, Jianmin ;
Yan, Fei ;
Zang, Qiang .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :2094-2111