Convolution spatial-temporal attention network for EEG emotion recognition

被引:0
|
作者
Cao, Lei [1 ,2 ]
Yu, Binlong [1 ]
Dong, Yilin [1 ]
Liu, Tianyu [1 ]
Li, Jie [2 ]
机构
[1] Shanghai Maritime Univ, Sch Informat Engn, Shanghai 201306, Peoples R China
[2] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R China
关键词
EEG; emotion recognition; data preprocessing; CNN; attention mechanisms; DECOMPOSITION;
D O I
10.1088/1361-6579/ad9661
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In recent years, emotion recognition using electroencephalogram (EEG) signals has garnered significant interest due to its non-invasive nature and high temporal resolution. We introduced a groundbreaking method that bypasses traditional manual feature engineering, emphasizing data preprocessing and leveraging the topological relationships between channels to transform EEG signals from two-dimensional time sequences into three-dimensional spatio-temporal representations. Maximizing the potential of deep learning, our approach provides a data-driven and robust method for identifying emotional states. Leveraging the synergy between convolutional neural network and attention mechanisms facilitated automatic feature extraction and dynamic learning of inter-channel dependencies. Our method showcased remarkable performance in emotion recognition tasks, confirming the effectiveness of our approach, achieving average accuracy of 98.62% for arousal and 98.47% for valence, surpassing previous state-of-the-art results of 95.76% and 95.15%. Furthermore, we conducted a series of pivotal experiments that broadened the scope of emotion recognition research, exploring further possibilities in the field of emotion recognition.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Emotion recognition using spatial-temporal EEG features through convolutional graph attention network
    Li, Zhongjie
    Zhang, Gaoyan
    Wang, Longbiao
    Wei, Jianguo
    Dang, Jianwu
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [2] STGATE: Spatial-temporal graph attention network with a transformer encoder for EEG-based emotion recognition
    Li, Jingcong
    Pan, Weijian
    Huang, Haiyun
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [3] Spatial-temporal network for fine-grained-level emotion EEG recognition
    Ji, Youshuo
    Li, Fu
    Fu, Boxun
    Li, Yang
    Zhou, Yijin
    Niu, Yi
    Zhang, Lijian
    Chen, Yuanfang
    Shi, Guangming
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (03)
  • [4] EEG Emotion Recognition Network Based on Attention and Spatiotemporal Convolution
    Zhu, Xiaoliang
    Liu, Chen
    Zhao, Liang
    Wang, Shengming
    SENSORS, 2024, 24 (11)
  • [5] A New Partitioned Spatial-Temporal Graph Attention Convolution Network for Human Motion Recognition
    Guo, Keyou
    Wang, Pengshuo
    Shi, Peipeng
    He, Chengbo
    Wei, Caili
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [6] Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition
    Wang, Zhe
    Wang, Yongxiong
    Zhang, Jiapeng
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [7] Spatial-Temporal Feature Fusion Neural Network for EEG-Based Emotion Recognition
    Wang, Zhe
    Wang, Yongxiong
    Zhang, Jiapeng
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [8] A Dual Attention Spatial-Temporal Graph Convolutional Network for Emotion Recognition from Gait
    Liu, Jiaqing
    Kisita, Shoji
    Chai, Shurong
    Tateyama, Tomoko
    Iwamoto, Yutaro
    Chen, Yen-Wei
    Journal of the Institute of Image Electronics Engineers of Japan, 2022, 51 (04): : 309 - 317
  • [9] Spatial-Temporal Recurrent Neural Network for Emotion Recognition
    Zhang, Tong
    Zheng, Wenming
    Cui, Zhen
    Zong, Yuan
    Li, Yang
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (03) : 839 - 847
  • [10] 3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition
    Liu, Shuaiqi
    Wang, Xu
    Zhao, Ling
    Li, Bing
    Hu, Weiming
    Yu, Jie
    Zhang, Yu-Dong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (11) : 5321 - 5331