Nanoindentation of boron-doped diamond on (001) crystal plane by molecular dynamics simulations

被引:0
|
作者
Liu, Xin [1 ]
Peng, Weiping [2 ,3 ]
Shen, Shengnan [3 ,4 ,5 ]
Deng, Zhenshen [3 ]
机构
[1] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[2] Wuhan Qingchuan Univ, Sch Mech & Elect Engn, Wuhan 430204, Peoples R China
[3] Wuhan Univ, Sch Power & Mech Engn, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[5] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
关键词
Boron-doped diamond; Nanoindentation; Molecular dynamics simulation; DEFORMATION MECHANISMS; INDENTATION; PLASTICITY; GRAPHITE; FRICTION; FILMS;
D O I
10.1016/j.diamond.2024.111903
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Boron-doped diamond is a crucial material for ultra-precision devices, with its mechanical properties and internal defect distribution being key factors that impact the efficiency and service life of such devices. This paper employs an innovative molecular dynamics method to analyze the nanoindentation process of boron-doped diamond with varying doping concentrations and crystal directions, offering valuable insights for the processing of boron-doped diamond. Firstly, a model of boron-doped diamond is built and nanoindentation simulations are conducted on the (001) crystal plane, with a comparative study for both 1 % boron-doped and pure diamond. Secondly, nanoindentation calculations and analyses are performed on the (001) crystal plane of diamonds doped with 0.1 %, 0.5 %, and 5 % boron to investigate the mechanical properties and dislocation evolution mechanisms across different boron-doping concentrations. Finally, the nanoindentation process of the (110) and (111) crystal planes of 1 % boron-doped diamond are calculated and analyzed to explore the crystal anisotropy in boron-doped diamond. The results show that boron-doped diamond exhibits higher Young's modulus, critical pressure, and stiffness compared to pure diamond. Furthermore, the equivalent von Mises stress on the stress concentration area and the quantity of dislocation during the nanoindentation loading process are reduced in boron-doped diamond compared to pure diamond. Meanwhile, the results demonstrate significant variations in the mechanical properties of diamond with different boron doping concentrations. The generation and diffusion mechanism of dislocations, as well as the type and quantity, do not exhibit consistency with increasing doping concentration. Moreover, our results suggest that (110) and (111) crystal surfaces have a lower critical pressure for inelastic deformation compared to (001) crystal surface, while their stiffness is higher. This study has the potential to advance the precision processing technology of boron-doped diamond.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Pseudogap in Boron-Doped Diamond and Cuprates
    Larsson, Sven
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2013, 26 (04) : 1089 - 1091
  • [22] Intervalence plasmons in boron-doped diamond
    Bhattacharya, Souvik
    Boyd, Jonathan
    Reichardt, Sven
    Allard, Valentin
    Talebi, Amir Hossein
    Maccaferri, Nicolo
    Shenderova, Olga
    Lereu, Aude L.
    Wirtz, Ludger
    Strangi, Giuseppe
    Sankaran, R. Mohan
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [23] Compensation in boron-doped CVD diamond
    Gabrysch, Markus
    Majdi, Saman
    Hallen, Anders
    Linnarsson, Margareta
    Schoner, Adolf
    Twitchen, Daniel
    Isberg, Jan
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2008, 205 (09): : 2190 - 2194
  • [24] HOLE CAPTURE IN BORON-DOPED DIAMOND
    GLESENER, JW
    APPLIED PHYSICS LETTERS, 1994, 64 (02) : 217 - 219
  • [25] Pseudogap in Boron-Doped Diamond and Cuprates
    Sven Larsson
    Journal of Superconductivity and Novel Magnetism, 2013, 26 : 1089 - 1091
  • [26] Optical properties of boron-doped diamond
    Wu, D
    Ma, YC
    Wang, ZL
    Luo, Q
    Gu, CZ
    Wang, NL
    Li, CY
    Lu, XY
    Jin, ZS
    PHYSICAL REVIEW B, 2006, 73 (01)
  • [27] Metal Contacts to Boron-doped Diamond
    Lodzinski, M.
    Guy, O. J.
    Castaing, A.
    Batcup, S.
    Wilks, S.
    Igic, P.
    Balmer, R. S.
    Wort, C. J. H.
    Lang, R.
    SILICON CARBIDE AND RELATED MATERIALS 2008, 2009, 615-617 : 995 - 998
  • [28] On unconventional superconductivity in boron-doped diamond
    Mares, J. J.
    Nesladek, M.
    Hubik, P.
    Kindl, D.
    Kristofik, J.
    DIAMOND AND RELATED MATERIALS, 2007, 16 (01) : 1 - 5
  • [29] First-principles molecular dynamics simulations for the properties of boron-doped tetrahedral amorphous carbon
    Yue, Qiang
    Yokoya, Takayoshi
    Muraoka, Yuji
    DIAMOND AND RELATED MATERIALS, 2024, 143
  • [30] Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling
    Tan, Shu Min
    Poh, Hwee Ling
    Sofer, Zdenek
    Pumera, Martin
    ANALYST, 2013, 138 (17) : 4885 - 4891