Uniformity and Reliability of Enhancement-Mode Polycrystalline Indium Oxide Thin Film Transistors Formed by Solid-Phase Crystallization

被引:0
作者
Okamoto, Naoki [1 ]
Wang, Xiaoqian [2 ]
Morita, Kotaro [1 ]
Kato, Yuto [1 ]
Alom, Mir Mutakabbir [2 ]
Magari, Yusaku [3 ]
Furuta, Mamoru [4 ]
机构
[1] Kochi Univ Technol, Mat Sci & Engn Course, Kochi 7828502, Japan
[2] Kochi Univ Technol, Engn Course, Kochi 7828502, Japan
[3] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010020, Japan
[4] Kochi Univ Technol, Ctr Nanotechnol Res Inst, Scool Engn Sci, Kochi 7828502, Japan
关键词
Polycrystalline oxide semiconductor; indium oxide; thin-film transistor; solid-phase crystallization; grain boundary; uniformity; reliability; ELECTRICAL-PROPERTIES;
D O I
10.1109/LED.2024.3480991
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A bottom-gate thin-film transistor (TFT) with hydrogen-doped polycrystalline indium oxide (poly-InOx:H) channel was fabricated to investigate the uniformity and reliability of the TFT. The carrier density (N-e) of the poly-InOx:H film markedly decreased after solid-phase crystallization in air at 300 degrees C, and a nondegenerate poly-InOx:H film with N-e of 1.7 x 10(17) cm(-3) could be achieved. The TFT with a 30-nm-thick poly-InOx:H channel operated in enhancement mode (E-mode) after post-fabrication annealing at more than 300 degrees C. The poly-InOx:H TFT exhibited good short-range uniformities with a field-effect mobility (mu(FE)) of 32.0 +/- 0.39 (3 sigma) cm(2)/Vs and a threshold voltage (V-t) of 0.58 +/- 0.18 (3 sigma) V. Furthermore, no threshold voltage shift was observed under negative gate bias and temperature stress at 60 degrees C for 6,000 s.
引用
收藏
页码:2403 / 2406
页数:4
相关论文
共 26 条
  • [1] Nomura K., Ohta H., Takagi A., Kamiya T., Hirano M., Hosono H., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors, Nature, 432, 7016, pp. 488-492, (2004)
  • [2] Kamiya T., Nomura K., Hosono H., Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater., 11, 4, (2010)
  • [3] Matsueda Y., Next generation technologies for OLED displays, SID Symp. Dig. Tech. Papers, 52, pp. 615-618, (2021)
  • [4] Park J., Lim J., High mobility oxide thin-film transistors for AMOLED displays, SID Symp. Dig. Tech. Papers, 53, pp. 20-23, (2022)
  • [5] Weiher R.L., Electrical properties of single crystals of indium oxide, J. Appl. Phys., 33, 9, pp. 2834-2839, (1962)
  • [6] Bierwagen O., Speck J.S., High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration, Appl. Phys. Lett., 97, 7, (2010)
  • [7] Noh J.H., Ryu S.Y., Jo S.J., Kim C.S., Sohn S.-W., Rack P.D., Kim D.-J., Baik H.K., Indium oxide thin-film transistors fabricated by RF sputtering at room temperature, IEEE Electron Device Lett., 31, 6, pp. 567-569, (2010)
  • [8] Kizu T., Aikawa S., Mitoma N., Shimizu M., Gao X., Lin M.-F., Nabatame T., Tsukagoshi K., Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability, Appl. Phys. Lett., 104, 15, (2014)
  • [9] Aikawa S., Nabatame T., Tsukagoshi K., Si-incorporated amorphous indium oxide thin-film transistors, Jpn. J. Appl. Phys., 58, 9, (2019)
  • [10] Ebata K., Tomai S., Tsuruma Y., Iitsuka T., Matsuzaki S., Yano K., High-mobility thin-film transistors with polycrystalline In-Ga-O channel fabricated by DC magnetron sputtering, Appl. Phys. Exp., 5, 1, (2012)