Recent progress and challenges in silicon-based anode materials for lithium-ion batteries

被引:35
|
作者
Toki, Gazi Farhan Ishraque [1 ]
Hossain, M. Khalid [2 ]
Rehman, Waheed Ur [1 ]
Manj, Rana Zafar Abbas [1 ]
Wang, Li [1 ]
Yang, Jianping [1 ]
机构
[1] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai, Peoples R China
[2] Bangladesh Atom Energy Commission, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
来源
INDUSTRIAL CHEMISTRY & MATERIALS | 2024年 / 2卷 / 02期
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE ANODE; SI-BASED COMPOSITE; POLY(ACRYLIC ACID) BINDER; DOPED CARBON LAYER; ELECTROCHEMICAL PERFORMANCE; ELECTROLYTE ADDITIVES; LOW-COST; SILICON/GRAPHITE COMPOSITE; CONDUCTIVE BINDER; POLYACRYLIC-ACID;
D O I
10.1039/d3im00115f
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Anode materials for Li-ion batteries (LIBs) utilized in electric vehicles, portable electronics, and other devices are mainly graphite (Gr) and its derivatives. However, the limited energy density of Gr-based anodes promotes the exploration of alternative anode materials such as silicon (Si)-based materials because of their abundance in nature and low cost. Specifically, Si can store 10 times more energy than Gr and also has the potential to enhance the energy density of LIBs. Despite the many advantages of Si-based anodes, such as high theoretical capacity and low price, their widespread use is hindered by two major issues: charge-induced volume expansion and unreliable solid electrolyte interphase (SEI) propagation. In this detailed review, we highlight the key issues, current advances, and prospects in the rational design of Si-based electrodes for practical applications. We first explain the fundamental electrochemistry of Si and the importance of Si-based anodes in LIBs. The excessive volume increase, relatively low charge efficiency, and inadequate areal capacity of Si-based anodes are discussed to identify the barriers in enhancing their performance in LIBs. Subsequently, the use of binders (e.g., linear polymer binders, branched polymer binders, cross-linked polymer binders, and conjugated conductive polymer binders), material-based anode composites (such as carbon and its derivatives, metal oxides, and MXenes), and liquid electrolyte construction techniques are highlighted to overcome the identified barriers. Further, tailoring Si-based materials and reshaping their surfaces and interfaces, including improving binders and electrolytes, are shown to be viable approaches to address their drawbacks, such as volume expansion, low charge efficiency, and poor areal capacity. Finally, we highlight that research and development on Si-based anodes are indispensable for their use in commercial applications.Keywords: Lithium-ion battery; Silicon-based anode; Volume expansion; Solid electrolyte interphase propagation; Binders; Composite anode materials.
引用
收藏
页码:226 / 269
页数:44
相关论文
共 50 条
  • [1] Recent Research Progress of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Du, Aimin
    Li, Hang
    Chen, Xinwen
    Han, Yeyang
    Zhu, Zhongpan
    Chu, Chuanchuan
    CHEMISTRYSELECT, 2022, 7 (19):
  • [2] Challenges and Recent Progress on Silicon-Based Anode Materials for Next-Generation Lithium-Ion Batteries
    Zhang, Chengzhi
    Wang, Fei
    Han, Jian
    Bai, Shuo
    Tan, Jun
    Liu, Jinshui
    Li, Feng
    SMALL STRUCTURES, 2021, 2 (06):
  • [3] Recent progress on silicon-based anode materials for practical lithium-ion battery applications
    Li, Peng
    Zhao, Guoqiang
    Zheng, Xiaobo
    Xu, Xun
    Yao, Chenghao
    Sun, Wenping
    Dou, Shi Xue
    ENERGY STORAGE MATERIALS, 2018, 15 : 422 - 446
  • [4] Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges
    Pavlovskii, Alexander A.
    Pushnitsa, Konstantin
    Kosenko, Alexandra
    Novikov, Pavel
    Popovich, Anatoliy A.
    MATERIALS, 2023, 16 (01)
  • [5] Progress in modification of micron silicon-based anode materials for lithium-ion battery
    Chen, Xinyuan
    Liu, Qi
    Hou, Lijuan
    Yang, Qiang
    Zhao, Xiaohan
    Mu, Daobin
    Li, Li
    Chen, Renjie
    Wu, Feng
    JOURNAL OF ENERGY STORAGE, 2024, 93
  • [6] Silicon-Based and -Related Materials for Lithium-Ion Batteries
    Zhao, Yun
    Kang, Yuqiong
    Jin, Yuhong
    Wang, Li
    Tian, Guangyu
    He, Xiangming
    PROGRESS IN CHEMISTRY, 2019, 31 (04) : 613 - 630
  • [7] Silicon-based anode materials for lithium batteries: recent progress, new trends, and future perspectives
    Majeed, Muhammad K. K.
    Iqbal, Rashid
    Hussain, Arshad
    Majeed, M. Umar
    Ashfaq, M. Zeeshan
    Ahmad, Muhammad
    Rauf, Sajid
    Saleem, Adil
    CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2024, 49 (02) : 221 - 253
  • [8] Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries
    Luo, Wei
    Chen, Xinqi
    Xia, Yuan
    Chen, Miao
    Wang, Lianjun
    Wang, Qingqing
    Li, Wei
    Yang, Jianping
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [9] Design of Electrodes and Electrolytes for Silicon-Based Anode Lithium-Ion Batteries
    Chen, Xiaoyi
    Wang, Bin
    Ye, Yaowen
    Liang, Jin
    Kong, Jie
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)
  • [10] Recent progress on silicon source materials and the related preparation process of silicon-based anodes in lithium-ion batteries
    Gong, Jun
    Song, Peng
    Liu, Xinghan
    Tang, Yanhong
    Tan, Kaiwen
    Li, Yejun
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2024, 41 (07): : 3507 - 3518