Higher-order triadic percolation on random hypergraphs

被引:1
作者
Sun, Hanlin [1 ,2 ]
Bianconi, Ginestra [3 ,4 ]
机构
[1] KTH Royal Inst Technol, Nordita, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
[2] Stockholm Univ, Hannes Alfvens vag 12, SE-10691 Stockholm, Sweden
[3] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[4] Alan Turing Inst, 96 Euston Rd, London NW1 2DB, England
关键词
NETWORKS;
D O I
10.1103/PhysRevE.110.064315
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we propose a comprehensive theoretical framework combining percolation theory with nonlinear dynamics to study hypergraphs with a time-varying giant component. We consider in particular hypergraphs with higher-order triadic interactions. Higher-order triadic interactions occur when one or more nodes up-regulate or down-regulate a hyperedge. For instance, enzymes regulate chemical reactions involving multiple reactants. Here we propose and investigate higher-order triadic percolation on hypergraphs showing that the giant component can have a nontrivial dynamics. Specifically, we show that the fraction of nodes in the giant component undergoes a route to chaos in the universality class of the logistic map. In hierarchical higher-order triadic percolation, we extend this paradigm in order to treat hierarchically nested higher-order triadic interactions. We demonstrate the nontrivial effects of their increased combinatorial complexity on the critical phenomena and the dynamical properties of the process. Finally, we consider other generalizations of the model studying the effect of adopting interdependencies and node regulation instead of hyperedge regulation. The comprehensive theoretical framework presented here sheds light on possible scenarios for climate networks, biological networks, and brain networks, where the hypergraph connectivity changes over time.
引用
收藏
页数:21
相关论文
共 54 条
[1]   Clustering in graphs and hypergraphs with categorical edge labels [J].
Amburg, Ilya ;
Veldt, Nate ;
Benson, Austin .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :706-717
[2]   Robustness and resilience of complex networks [J].
Artime, Oriol ;
Grassia, Marco ;
De Domenico, Manlio ;
Gleeson, James P. ;
Makse, Hernan A. ;
Mangioni, Giuseppe ;
Perc, Matjaz ;
Radicchi, Filippo .
NATURE REVIEWS PHYSICS, 2024, 6 (02) :114-131
[3]   High-order species interactions shape ecosystem diversity [J].
Bairey, Eyal ;
Kelsic, Eric D. ;
Kishony, Roy .
NATURE COMMUNICATIONS, 2016, 7
[4]   The physics of higher-order interactions in complex systems [J].
Battiston, Federico ;
Amico, Enrico ;
Barrat, Alain ;
Bianconi, Ginestra ;
Ferraz de Arruda, Guilherme ;
Franceschiello, Benedetta ;
Iacopini, Iacopo ;
Kefi, Sonia ;
Latora, Vito ;
Moreno, Yamir ;
Murray, Micah M. ;
Peixoto, Tiago P. ;
Vaccarino, Francesco ;
Petri, Giovanni .
NATURE PHYSICS, 2021, 17 (10) :1093-1098
[5]   Networks beyond pairwise interactions: Structure and dynamics [J].
Battiston, Federico ;
Cencetti, Giulia ;
Iacopini, Iacopo ;
Latora, Vito ;
Lucas, Maxime ;
Patania, Alice ;
Young, Jean-Gabriel ;
Petri, Giovanni .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 874 :1-92
[6]   Avalanche Collapse of Interdependent Networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[7]   Correlated edge overlaps in multiplex networks [J].
Baxter, Gareth J. ;
Bianconi, Ginestra ;
da Costa, Rui A. ;
Dorogovtsev, Sergey N. ;
Mendes, Jose F. F. .
PHYSICAL REVIEW E, 2016, 94 (01)
[8]  
Bianconi G, 2018, MULTILAYER NETWORKS: STRUCTURE AND FUNCTION, DOI 10.1093/oso/9780198753919.001.0001
[9]  
Bianconi G., 2021, Higher-Order Networks:An introduction to simplicial complexes
[10]   Theory of percolation on hypergraphs [J].
Bianconi, Ginestra ;
Dorogovtsev, Sergey N. .
PHYSICAL REVIEW E, 2024, 109 (01)