Chiral Nematic Cellulose Nanocrystal Films for Enhanced Charge Separation and Quantum-Confined Stark Effect

被引:0
|
作者
Aminadav, Gur [1 ,2 ,3 ]
Shoseyov, Omer [1 ,3 ]
Belsey, Shylee [2 ]
Voignac, Daniel [2 ,3 ]
Yochelis, Shira [1 ,3 ]
Levi-Kalisman, Yael [3 ]
Yan, Binghai [4 ]
Shoseyov, Oded [2 ,3 ]
Paltiel, Yossi [1 ,3 ]
机构
[1] Hebrew Univ Jerusalem, Dept Appl Phys, IL-9190401 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Robert H Smith Fac Agr Food & Environm, Dept Plant Sci & Genet Agr, Rehovot, Israel
[3] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-9190401 Jerusalem, Israel
[4] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
关键词
CISS effect; chirality; CNC; chargeseparation; stark effect; photovoltaic cell; INDUCED CIRCULAR-DICHROISM; SPIN SELECTIVITY; NANOPARTICLES; PHASE; SUSPENSIONS; DOTS; PHOTOLUMINESCENCE; ORIENTATION; RELAXATION; TRANSPORT;
D O I
10.1021/acsnano.4c04727
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient charge separation is essential in various optoelectronic systems, yet it continues to pose substantial challenges. Building upon the recent evidence that chiral biomolecules can function as electron spin filters, this study aims to extend the application of chirality-driven charge separation from the molecular level to the mesoscale and supramolecular scale. Utilizing cellulose nanocrystals (CNCs) derived from cellulose, the most abundant biomaterial on Earth, this research leverages their self-assembly into chiral nematic structures and their dielectric properties. A device is introduced featuring a chiral nematic hybrid film composed of CNCs and quantum dots (QDs), decorated with iron oxide nanoparticles. Using the quantum-confined Stark effect (QCSE) to probe charge separation, we reveal significant sensitivity to the circular polarization of light and the chiral nematic structure of the film. This approach achieves effective, long-lasting charge separation, both locally and across length scales exceeding 1 mu m, enabling potential applications such as self-assembled devices that combine photovoltaic cells with electric capacitance as well as optical electric-field hybrid biosensors.
引用
收藏
页码:28609 / 28621
页数:13
相关论文
共 33 条
  • [21] The quantum-confined Stark effect and localization of charge carriers in AlxGa1-xN/AlyGa1-yN quantum wells with different morphologies
    Shevchenko, E. A.
    Jmerik, V. N.
    Mizerov, A. M.
    Nechaev, D. V.
    Sitnikova, A. A.
    Ivanov, S. V.
    Toropov, A. A.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 10, NO 3, 2013, 10 (03): : 319 - 322
  • [22] Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color
    Yao, Kun
    Meng, Qijun
    Bulone, Vincent
    Zhou, Qi
    ADVANCED MATERIALS, 2017, 29 (28)
  • [23] Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles
    Cho, Chu-Young
    Park, Seong-Ju
    OPTICS EXPRESS, 2016, 24 (07): : 7488 - 7494
  • [24] Electronic and optical properties of ZnO/(Mg,Zn)O quantum wells with and without a distinct quantum-confined Stark effect
    Stoelzel, Marko
    Kupper, Johannes
    Brandt, Matthias
    Mueller, Alexander
    Benndorf, Gabriele
    Lorenz, Michael
    Grundmann, Marius
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (06)
  • [25] QUANTUM-CONFINED STARK SHIFT DUE TO PIEZOELECTRIC EFFECT IN INGAAS/GAAS QUANTUM-WELLS GROWN ON (111)A GAAS
    VACCARO, PO
    TOMINAGA, K
    HOSODA, M
    FUJITA, K
    WATANABE, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (2B): : 1362 - 1366
  • [26] Free carrier screening of quantum-confined stark effect affecting on luminescence energy shift and carrier lifetime in InGaN quantum wells
    Kuroda, T
    Tackeuchi, A
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON NITRIDE SEMICONDUCTORS, 2000, 1 : 516 - 519
  • [27] Tuning the cellulose nanocrystal alignments for supramolecular assembly of chiral nematic films with highly efficient UVB shielding capability
    Ling, Zhe
    Wang, Kaili
    Liu, Wanying
    Tang, Wei
    Yong, Qiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (25) : 8493 - 8501
  • [28] All-electric laser beam control by quantum-confined Stark effect modulator with an integrated Bragg grating
    Shashkin, I. S.
    Soboleva, O. S.
    Gavrina, P. S.
    Zolotarev, V. V.
    Slipchenko, S. O.
    Pikhtin, N. A.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 219 - 219
  • [29] Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires
    Zagonel, L. F.
    Tizei, L. H. G.
    Vitiello, G. Z.
    Jacopin, G.
    Rigutti, L.
    Tchernycheva, M.
    Julien, F. H.
    Songmuang, R.
    Ostasevicius, T.
    de la Pena, F.
    Ducati, C.
    Midgley, P. A.
    Kociak, M.
    PHYSICAL REVIEW B, 2016, 93 (20)
  • [30] Spectral diffusion of neutral and charged exciton transitions in single CdSe/ZnS nanocrystals due to quantum-confined Stark effect
    Ihara, Toshiyuki
    Kanemitsu, Yoshihiko
    PHYSICAL REVIEW B, 2014, 90 (19):