MoBoo: Memory-Boosted Vision Transformer for Class-Incremental Learning

被引:0
|
作者
Ni, Bolin [1 ,2 ]
Nie, Xing [1 ,2 ]
Zhang, Chenghao [1 ,2 ]
Xu, Shixiong [1 ,2 ]
Zhang, Xin [3 ]
Meng, Gaofeng [1 ,2 ,4 ]
Xiang, Shiming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Beijing Inst Technol, Sch Informat & Elect, Radar Res Lab, Beijing 100081, Peoples R China
[4] HK Inst Sci & Innovat, CAS Ctr Artificial Intelligence & Robot, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Continual learning; class-incremental learning; vision transformer; image recognition;
D O I
10.1109/TCSVT.2024.3417431
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continual learning strives to acquire knowledge across sequential tasks without forgetting previously assimilated knowledge. Current state-of-the-art methodologies utilize dynamic architectural strategies to increase the network capacity for new tasks. However, these approaches often suffer from a rapid growth in the number of parameters. While some methods introduce an additional network compression stage to address this, they tend to construct complex and hyperparameter-sensitive systems. In this work, we introduce a novel solution to this challenge by proposing Memory-Boosted transformer (MoBoo), instead of conventional architecture expansion and compression. Specifically, we design a memory-augmented attention mechanism by establishing a memory bank where the "key" and "value" linear projections are stored. This memory integration prompts the model to leverage previously learned knowledge, thereby enhancing stability during training at a marginal cost. The memory bank is lightweight and can be easily managed with a straightforward queue. Moreover, to increase the model's plasticity, we design a memory-attentive aggregator, which leverages the cross-attention mechanism to adaptively summarize the image representation from the encoder output that has historical knowledge involved. Extensive experiments on challenging benchmarks demonstrate the effectiveness of our method. For example, on ImageNet-100 under 10 tasks, our method outperforms the current state-of-the-art methods by +3.74% in average accuracy and using fewer parameters.
引用
收藏
页码:11169 / 11183
页数:15
相关论文
共 50 条
  • [1] Class-Incremental Learning with Topological Schemas of Memory Spaces
    Chang, Xinyuan
    Tao, Xiaoyu
    Hong, Xiaopeng
    Wei, Xing
    Ke, Wei
    Gong, Yihong
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9719 - 9726
  • [2] Class-Incremental Learning: A Survey
    Zhou, Da-Wei
    Wang, Qi-Wei
    Qi, Zhi-Hong
    Ye, Han-Jia
    Zhan, De-Chuan
    Liu, Ziwei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9851 - 9873
  • [3] Deep Learning for Class-Incremental Learning: A Survey
    Zhou D.-W.
    Wang F.-Y.
    Ye H.-J.
    Zhan D.-C.
    Jisuanji Xuebao/Chinese Journal of Computers, 2023, 46 (08): : 1577 - 1605
  • [4] Future-proofing class-incremental learning
    Jodelet, Quentin
    Liu, Xin
    Phua, Yin Jun
    Murata, Tsuyoshi
    MACHINE VISION AND APPLICATIONS, 2025, 36 (01)
  • [5] Opportunistic Dynamic Architecture for Class-Incremental Learning
    Rahman, Fahrurrozi
    Rosales Sanabria, Andrea
    Ye, Juan
    IEEE Access, 2025, 13 : 59146 - 59156
  • [6] Is Class-Incremental Enough for Continual Learning?
    Cossu, Andrea
    Graffieti, Gabriele
    Pellegrini, Lorenzo
    Maltoni, Davide
    Bacciu, Davide
    Carta, Antonio
    Lomonaco, Vincenzo
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [7] DYNAMIC REPLAY TRAINING FOR CLASS-INCREMENTAL LEARNING
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 5915 - 5919
  • [8] Co-Transport for Class-Incremental Learning
    Zhou, Da-Wei
    Ye, Han-Jia
    Zhan, De-Chuan
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1645 - 1654
  • [9] Semantic Knowledge Guided Class-Incremental Learning
    Wang, Shaokun
    Shi, Weiwei
    Dong, Songlin
    Gao, Xinyuan
    Song, Xiang
    Gong, Yihong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (10) : 5921 - 5931
  • [10] Model Behavior Preserving for Class-Incremental Learning
    Liu, Yu
    Hong, Xiaopeng
    Tao, Xiaoyu
    Dong, Songlin
    Shi, Jingang
    Gong, Yihong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7529 - 7540