Availability optimisation of heat treatment process using particle swarm optimisation approach

被引:0
|
作者
Kumar A. [1 ]
Punia D.S. [1 ]
机构
[1] Department of Mechanical Engineering, Deen Bandhu Chotu Ram University of Science and Technology, Sonepat, Haryana, Murthal
关键词
availability; particle swarm optimisation; PSO; reliability; SSA; steady state analysis; transient state analysis; TSA;
D O I
10.1504/IJISE.2023.135774
中图分类号
学科分类号
摘要
In this research paper a methodology is presented for prediction of performance parameters of a series parallel industrial system. The particle swarm optimisation (PSO) technique is used for evaluating the performance of industrial system and the Markov method is used for mathematical modelling. The mean time to failure is calculated to be 352 days and it is observed that after 30 days the reliability of the system became steady state which shows the bathtub behaviour. Using the PSO technique for maximising the system availability (SA) with ranges of performance parameters selected from the real industrial system, the different economical possible performance measures for maximum availability is predicted which are helpful for reduction in cost of production. From the performance analysis the optimised availability using PSO is estimated 94.25% whereas it is 93.60% using Markov method. © 2023 Inderscience Enterprises Ltd.
引用
收藏
页码:432 / 457
页数:25
相关论文
共 50 条
  • [41] Improved strategy of particle swarm optimisation algorithm for reactive power optimisation
    Lu, Jin-gui
    Zhang, Li
    Yang, Hong
    Du, Jie
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 27 - 33
  • [42] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [43] Particle swarm optimisation for data warehouse logical design
    Derrar, Hacene
    Ahmed-Nacer, Mohamed
    Boussaid, Omar
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2012, 4 (04) : 249 - 257
  • [44] Particle swarm optimisation with multi-strategy learning
    Lin G.
    Sun J.
    International Journal of Wireless and Mobile Computing, 2020, 18 (01) : 22 - 30
  • [45] Parameter settings in particle swarm optimisation algorithms: a survey
    Li, Jing
    Cheng, Shi
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2022, 16 (02) : 164 - 182
  • [46] Overview of Particle Swarm Optimisation for Feature Selection in Classification
    Binh Tran
    Xue, Bing
    Zhang, Mengjie
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 605 - 617
  • [47] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [48] Particle swarm optimisation based Diophantine equation solver
    Abraham, Siby
    Sanyal, Sugata
    Sanglikar, Mukund
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (02) : 100 - 114
  • [49] Perfectly convergent particle swarm optimisation in multidimensional space
    Kumar D.
    Jain N.K.
    Nangia U.
    Kumar, Devinder (devdaksh@gmail.com), 1600, Inderscience Publishers (18): : 221 - 228
  • [50] Perfectly convergent particle swarm optimisation in multidimensional space
    Kumar, Devinder
    Jain, N. K.
    Nangia, Uma
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2021, 18 (04) : 221 - 228