Efficient solvers for saddle point problems with applications to PDE-constrained optimization

被引:0
|
作者
Zulehner, Walter [1 ]
机构
[1] Institut für Numerische Mathematik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
关键词
40;
D O I
10.1007/978-3-642-30316-6-9
中图分类号
学科分类号
摘要
引用
收藏
页码:197 / 216
相关论文
共 50 条
  • [21] Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems
    Antil, Harbir
    Otarola, Enrique
    Salgado, Abner J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 852 - 883
  • [22] A Preconditioned GMRES Method for Elliptic PDE-constrained Optimization Problems
    Zhu, Cong-Yi
    Huang, Yu-Mei
    2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 711 - 713
  • [23] Spectral analysis of block preconditioners for double saddle-point linear systems with application to PDE-constrained optimization
    Bergamaschi, Luca
    Martinez, Angeles
    Pearson, John W.
    Potschka, Andreas
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024,
  • [24] A note on multigrid preconditioning for fractional PDE-constrained optimization problems
    Antil, Harbir
    Draganescu, Andrei
    Green, Kiefer
    RESULTS IN APPLIED MATHEMATICS, 2021, 9 (09):
  • [25] Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization
    John W. Pearson
    Jacek Gondzio
    Numerische Mathematik, 2017, 137 : 959 - 999
  • [26] Continuous analogue to iterative optimization for PDE-constrained inverse problems
    Boiger, R.
    Fiedler, A.
    Hasenauer, J.
    Kaltenbacher, B.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2019, 27 (06) : 710 - 734
  • [27] Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization
    Pearson, John W.
    Gondzio, Jacek
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 959 - 999
  • [28] Interior-point methods and preconditioning for PDE-constrained optimization problems involving sparsity terms
    Pearson, John W.
    Porcelli, Margherita
    Stoll, Martin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2020, 27 (02)
  • [29] PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS
    Kesenci, Yekta
    Boquet-Pujadas, Aleix
    van Bodegraven, Emma
    Etienne-Manneville, Sandrine
    Re, Elisabeth Labruye
    Olivo-Marin, Jean-Christophe
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2192 - 2195
  • [30] Pde-constrained optimization for advanced materials
    Leugering G̈.
    Stingl M.
    GAMM Mitteilungen, 2010, 33 (02) : 209 - 229