Advanced modeling techniques for predicting gas holdup in bubble columns using machine learning

被引:0
|
作者
Shahhoseyni, Shabnam [1 ]
Rahmani, Mohammad [1 ]
Sivaram, Abhishek [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Chem Engn, Tehran, Iran
[2] Tech Univ Denmark, Dept Chem & Biochem Engn, PROSYS, Soltofts Plads 227, DK-2800 Lyngby, Denmark
关键词
Gas holdup; Machine learning; Bias-variance trade-off; Learning curve; Dataset adequacy; Validation curve; MASS-TRANSFER; ARTIFICIAL-INTELLIGENCE; SCALE; PARAMETERS; REACTOR;
D O I
10.1016/j.fuel.2025.134449
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bubble columns are critical in bioreactor operations for biofuel production and microbial carbon sequestration, influencing hydrodynamics and gas-liquid mass transfer. This study delves into machine learning regression models for gas hold up prediction in bubble columns including linear regression, support vector regressor, decision trees, gaussian process regressor, random forest, artificial neural networks, XGBoost, and ANN ensembles. The model selection process carefully addressed the bias-variance trade-off, evaluated data adequacy through learning curves, assessed hyperparameter tuning via validation curves, applied nested cross-validation to ensure robust generalizability and included deployment of the models on new unseen data. XGBoost achieved the best test performance (MSE = 0.0004, R2 = 0.97, MAE = 0.014), while Linear Regression with feature engineering performed comparably on unseen data. These findings propose a systematic model selection procedure using ML in regression tasks, providing a resource-efficient alternative to CFD methods for modeling gas holdup dynamics as medium properties evolve.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Modeling gas holdup in gas-liquid-fiber semibatch bubble columns
    Su, XF
    Heindel, TJ
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (24) : 9355 - 9363
  • [2] Effect of Gas Density on Gas Holdup in Bubble Columns
    Hecht, Kristin
    Bey, Oliver
    Ettmueller, Juergen
    Graefen, Patrick
    Friehmelt, Rainer
    Nilles, Michael
    CHEMIE INGENIEUR TECHNIK, 2015, 87 (06) : 762 - 772
  • [3] Effect of kinds of gas on gas holdup in bubble columns
    Yamashita, Fukuji
    Fukaura, Tatsuma
    ICHEAP-9: 9TH INTERNATIONAL CONFERENCE ON CHEMICAL AND PROCESS ENGINEERING, PTS 1-3, 2009, 17 : 471 - 476
  • [4] Hydrodynamics in Bubble Columns - Measurement of Gas Holdup and Bubble Size
    Moers, Friedemann
    Ortloff, Felix
    Graf, Frank
    Kolb, Thomas
    CHEMIE INGENIEUR TECHNIK, 2019, 91 (07) : 1059 - 1065
  • [5] Prediction of gas holdup in bubble columns using artificial neural network
    Wu, YX
    Luo, XH
    Chen, QM
    Li, DH
    Li, SR
    Al-Dahhan, MH
    Dudukovic, MP
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2003, 11 (02) : 162 - 165
  • [6] Prediction of Gas Holdup in Bubble Columns Using Artificial Neural Network
    吴元欣
    罗湘华
    陈启明
    李定或
    李世荣
    M.H.Al-Dahhan
    M.P.Dudukovic
    ChineseJournalofChemicalEngineering, 2003, (02) : 42 - 45
  • [7] Gas-holdup measurements in bubble columns using computed tomography
    Kumar, SB
    Moslemian, D
    Dudukovic, MP
    AICHE JOURNAL, 1997, 43 (06) : 1414 - 1425
  • [8] Predicting axial compression capacity of CFDST columns and design optimization using advanced machine learning techniques
    Nguyen, Thuy-Anh
    Ly, Hai-Bang
    STRUCTURES, 2024, 59
  • [9] Gas holdup in circulating bubble columns with pseudoplastic liquids
    Al-Masry, WA
    CHEMICAL ENGINEERING & TECHNOLOGY, 2001, 24 (01) : 71 - 76
  • [10] Modeling and predicting US recessions using machine learning techniques
    Vrontos, Spyridon D.
    Galakis, John
    Vrontos, Ioannis D.
    INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (02) : 647 - 671