共 50 条
Insights into the inhibitory activity and mechanism of natural compounds from Rhinacanthus nasutus on α-glucosidase through kinetic, molecular docking, and molecular dynamics studies
被引:1
|作者:
Le, Thi-Kim-Dung
[1
,2
]
Ene, Felicitas
[3
]
Duong, Thuc-Huy
[4
]
Mulya, Fadjar
[5
]
Chavasiri, Warinthorn
[3
]
机构:
[1] Ton Duc Thang Univ, Inst Adv Study Technol, Lab Biophys, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Pharm, Ho Chi Minh City, Vietnam
[3] Chulalongkorn Univ, Fac Sci, Ctr Excellence Nat Prod Chem, Dept Chem, Bangkok 10330, Thailand
[4] Ho Chi Minh City Univ Educ, Dept Chem, Ho Chi Minh City 700000, Vietnam
[5] Univ Airlangga, Nanotechnol Engn Program, Fac Adv Technol & Multidiscipline, Surabaya 60115, Indonesia
关键词:
Rhinacathin nasutus;
alpha-glucosidase inhibition;
kinetic analysis;
molecular docking;
molecular dynamics;
NAPHTHOQUINONE ESTERS;
MEDICINAL-PLANT;
ELECTROPHILICITY;
ACCURACY;
STEMS;
D O I:
10.1016/j.molstruc.2024.140527
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Rhinacathin nasutus, commonly found in the tropical regions of Africa and Asia, has demonstrated a range of pharmacological effects, including anticancer, antifungal, anti-inflammatory, anti-Alzheimer, anti-tumor, antiParkinson, and hypolipidemic activities. However, reports on how its secondary metabolites inhibit alpha-glucosidase are scarce. The phytochemical investigation on the stems of Rhinacathin nasuthus resulted in the isolation and identification of a new compound (1) together with nine known metabolites (2-10). Their structures were elucidated by spectroscopic techniques, mass spectrometry and literature values. The absolute configuration of 1 was determined through NOESY data analysis and electronic circular dichroism (ECD) spectroscopy. All isolated compounds were tested for their yeast alpha-glucosidase inhibitory activity, exhibiting moderate to good activity. Notably, compounds (3), (4), and betulin (8) showed potent activity toward alpha-glucosidase with IC50 values of 10.8, 18.6, and 6.5 mu M, respectively (the positive control, acarbose, IC50 93.6 mu M). This study marks the first investigation of alpha-glucosidase activity for compounds 3 and 4. Therefore, these compounds were chosen for kinetic studies, molecular docking, and molecular dynamics to understand their mechanism. The results from both in vitro and in silico studies suggest that compounds 3 and 4 could be promising candidates for further research in the development of new alpha-glucosidase inhibitors.
引用
收藏
页数:9
相关论文