共 88 条
- [1] Basit A., Zafar M., Liu X., Javed A.R., Jalil Z., Kifayat K., A comprehensive survey of AI-enabled phishing attacks detection techniques, Telecommun Syst, 76, 1, pp. 139-154, (2021)
- [2] Kaloudi N., Li J., The AI-based cyber threat landscape: a survey, ACM Comput Surv, 53, 1, pp. 1-34, (2021)
- [3] Montanez R., Golob E., Xu S., Human cognition through the lens of social engineering cyberattacks, Front Psychol, 11, (2020)
- [4] Hakim Z.M., Et al., The phishing email suspicion test (PEST) a lab-based task for evaluating the cognitive mechanisms of phishing detection, Behav Res, 53, 3, pp. 1342-1352, (2021)
- [5] Phishing Activity Trends Report, 1St Quarter, (2022)
- [6] Jari M., An overview of phishing victimization: Human factors, training and the role of emotions, Computer Science and Information Technology. 12Th International Conference on Computer Science and Information Technology (CCSIT 2022)., (2022)
- [7] Almoqbil A., O'Connor B., Anderson R., Shittu J., McLeod P., Modeling deception: A case study of email phishing, In: Proceedings from the Document Academy, 8, 2, (2021)
- [8] Chan-Tin E., Stalans L., Johnston S., Reyes D., Kennison S., Predicting phishing victimization, In: Fifth International Workshop on Systems and Network Telemetry and Analytics., (2022)
- [9] Ge Y., Lu L., Cui X., Chen Z., Qu W., How personal characteristics impact phishing susceptibility: the mediating role of mail processing, Appl Ergon, 97, (2021)
- [10] Sabir B., Ullah F., Babar M.A., Gaire R., Machine learning for detecting data exfiltration: a review, ACM Comput Surv, 54, 3, pp. 1-47, (2022)