Expanding g-C3N4 capabilities for photocatalytic H2 production by modification with Ti3C2Tx MXene

被引:0
|
作者
Potapenko, Kseniya O. [1 ]
Vasilchenko, Danila B. [1 ,2 ]
Kurenkova, Anna Yu. [1 ]
Saraev, Andrey A. [1 ,3 ]
Mishchenko, Denis D. [1 ,3 ]
Gerasimov, Evgeny Yu. [1 ]
Kozlova, Ekaterina A. [1 ]
机构
[1] Boreskov Inst Catalysis, 5 Ave Lavrentieva, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
[3] Boreskov Inst Catalysis, Synchrotron Radiat Facil SKIF, Nikolskiy Ave 1, Koltsov 630559, Russia
基金
俄罗斯科学基金会;
关键词
Photocatalytic hydrogen production; MXene; Visible light; Biomass; RAY PHOTOELECTRON-SPECTROSCOPY; GRAPHITIC CARBON NITRIDE; HYDROGEN-PRODUCTION; ENERGY; EXFOLIATION; COMPONENTS; EVOLUTION; GLUCOSE; ETHANOL; TIO2;
D O I
10.1016/j.ijhydene.2024.12.213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen production is one of the most promising techniques for solar energy conversion. Herein, we proposed photocatalysts based on graphitic carbon nitride g-C3N4 with two-dimensional Ti3C2Tx (MXene) for photocatalytic hydrogen production under visible light (430 nm). The synthesis of the 0.5-15 wt% Ti3C2Tx/g- C3N4 photocatalysts included thermal polycondensation of melamine and urea mixture to obtain g-C3N4 with further deposition on its surface of Ti3C2Tx obtained by conventional etching technique. Bulk and surface structure of the synthesized photocatalysts was established by a set of characterization techniques. The photo- catalyst activity was tested in the photocatalytic hydrogen evolution from aqueous solutions of triethanolamine (TEOA), ethanol, and glucose. It was found that for all sacrificial agents, deposition of MXenes on the surface of g-C3N4 increased the activity in the hydrogen production. The highest activity at the level of 100 mu mol g- 1 h- 1 was achieved over 10 wt% Ti3C2Tx/g-C3N4 photocatalyst with TEOA as a sacrificial agent. In addition to the formation of hydrogen the presence of by-products, including CO, CO2, and other light hydrocarbons, was monitored. Relationships were established between the composition of the photocatalyst, the nature of the sacrificial agent and the distribution of reaction products.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 50 条
  • [41] Photocatalytic H2 evolution coupled with selective aromatic alcohol oxidation over nitrogen-vacancy-rich Ti3C2Tx/g-C3N4 junctions via interfacial N-Ti bonding
    Yi, Wen-Jing
    Du, Xin
    Yi, Sha-Sha
    Liu, Yanyan
    Li, Baojun
    Liu, Zhong-Yi
    Yue, Xin-Zheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (40) : 21677 - 21685
  • [42] The synergy between Ti species and g-C3N4 by doping and hybridization for the enhancement of photocatalytic H2 evolution
    Wang, Xiao-jing
    Tian, Xiao
    Li, Fa-tang
    Zhao, Jun
    Li, Yu-pei
    Liu, Rui-hong
    Hao, Ying-juan
    DALTON TRANSACTIONS, 2015, 44 (40) : 17859 - 17866
  • [43] A New and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production
    Dong, Jie
    Shi, Ying
    Huang, Cunping
    Wu, Qiang
    Zeng, Tao
    Yao, Weifeng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 : 27 - 35
  • [44] Ti3C2Tx MXene compounds for electrochemical energy storage
    Ferrara, Chiara
    Gentile, Antonio
    Marchionna, Stefano
    Ruffo, Riccardo
    CURRENT OPINION IN ELECTROCHEMISTRY, 2021, 29
  • [45] High Concentration of Ti3C2Tx MXene in Organic Solvent
    Zhang, Qingxiao
    Lai, Huirong
    Fan, Runze
    Ji, Peiyi
    Fu, Xueli
    Li, Hui
    ACS NANO, 2021, 15 (03) : 5249 - 5262
  • [46] Nanosized BaSnO3 as Electron Transport Promoter Coupled with g-C3N4 toward Enhanced Photocatalytic H2 Production
    Kang, Xing
    Shi, Jinwen
    Lu, Huaiyu
    Zhang, Guiquan
    Yao, Jiantao
    Hou, Lulu
    Chen, Feng
    Mao, Samuel S.
    Binas, Vassilios D.
    Shen, Shaohua
    ADVANCED SUSTAINABLE SYSTEMS, 2021, 5 (09)
  • [47] Interfacial Schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel
    Ma, Xiumin
    Ma, Zheng
    Zhang, Hongguang
    Lu, Dongzhu
    Duan, Jizhou
    Hou, Baorong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 426
  • [48] Tensile behaviors of Ti3C2Tx(MXene) films
    Luo, Shaohong
    Patole, Shashikant
    Anwer, Shoaib
    Li, Baosong
    Delclos, Thomas
    Gogotsi, Oleksiy
    Zahorodna, Veronika
    Balitskyi, Vitalii
    Liao, Kin
    NANOTECHNOLOGY, 2020, 31 (39)
  • [49] Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification
    Li, Junlian
    Zhang, Qian
    Zou, Yanzhao
    Cao, Yuehan
    Cui, Wen
    Dong, Fan
    Zhou, Ying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 (575) : 443 - 451
  • [50] MAPbI3 microcrystals integrated with Ti3C2Tx MXene nanosheets for efficient visible-light photocatalytic H2 evolution
    Li, Wenbo
    Wang, Fang
    Zhang, Zhengguo
    Min, Shixiong
    CHEMICAL COMMUNICATIONS, 2021, 57 (63) : 7774 - 7777