Expanding g-C3N4 capabilities for photocatalytic H2 production by modification with Ti3C2Tx MXene

被引:0
|
作者
Potapenko, Kseniya O. [1 ]
Vasilchenko, Danila B. [1 ,2 ]
Kurenkova, Anna Yu. [1 ]
Saraev, Andrey A. [1 ,3 ]
Mishchenko, Denis D. [1 ,3 ]
Gerasimov, Evgeny Yu. [1 ]
Kozlova, Ekaterina A. [1 ]
机构
[1] Boreskov Inst Catalysis, 5 Ave Lavrentieva, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
[3] Boreskov Inst Catalysis, Synchrotron Radiat Facil SKIF, Nikolskiy Ave 1, Koltsov 630559, Russia
基金
俄罗斯科学基金会;
关键词
Photocatalytic hydrogen production; MXene; Visible light; Biomass; RAY PHOTOELECTRON-SPECTROSCOPY; GRAPHITIC CARBON NITRIDE; HYDROGEN-PRODUCTION; ENERGY; EXFOLIATION; COMPONENTS; EVOLUTION; GLUCOSE; ETHANOL; TIO2;
D O I
10.1016/j.ijhydene.2024.12.213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen production is one of the most promising techniques for solar energy conversion. Herein, we proposed photocatalysts based on graphitic carbon nitride g-C3N4 with two-dimensional Ti3C2Tx (MXene) for photocatalytic hydrogen production under visible light (430 nm). The synthesis of the 0.5-15 wt% Ti3C2Tx/g- C3N4 photocatalysts included thermal polycondensation of melamine and urea mixture to obtain g-C3N4 with further deposition on its surface of Ti3C2Tx obtained by conventional etching technique. Bulk and surface structure of the synthesized photocatalysts was established by a set of characterization techniques. The photo- catalyst activity was tested in the photocatalytic hydrogen evolution from aqueous solutions of triethanolamine (TEOA), ethanol, and glucose. It was found that for all sacrificial agents, deposition of MXenes on the surface of g-C3N4 increased the activity in the hydrogen production. The highest activity at the level of 100 mu mol g- 1 h- 1 was achieved over 10 wt% Ti3C2Tx/g-C3N4 photocatalyst with TEOA as a sacrificial agent. In addition to the formation of hydrogen the presence of by-products, including CO, CO2, and other light hydrocarbons, was monitored. Relationships were established between the composition of the photocatalyst, the nature of the sacrificial agent and the distribution of reaction products.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 50 条
  • [31] Antibacterial Activity of Ti3C2Tx MXene
    Rasool, Kashif
    Helal, Mohamed
    Ali, Adnan
    Ren, Chang E.
    Gogotsi, Yury
    Mahmoud, Khaled A.
    ACS NANO, 2016, 10 (03) : 3674 - 3684
  • [32] g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution
    Liu, Yanfei
    Ma, Zhen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 615 (615)
  • [33] Templated Growth of In2S3 in Ti3C2TX MXene with Enhanced Photocatalytic Properties
    Herber, Marcel
    Hill, Eric H.
    SOLAR RRL, 2024, 8 (12):
  • [34] Progress on g-C3N4 based heterojunction photocatalyst for H2 production via Photocatalytic water splitting
    Shuaibu, Abubakar Saidu
    Hafeez, Hafeez Yusuf
    Mohammed, J.
    Dankawu, U. M.
    Ndikilar, Chifu E.
    Suleiman, Abdussalam Balarabe
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1002
  • [35] Photocatalytic H2 Evolution, CO2 Reduction, and NOx Oxidation by Highly Exfoliated g-C3N4
    Todorova, Nadia
    Papailias, Ilias
    Giannakopoulou, Tatiana
    Ioannidis, Nikolaos
    Boukos, Nikos
    Dallas, Panagiotis
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Trapalis, Christos
    CATALYSTS, 2020, 10 (10) : 1 - 27
  • [36] Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production
    Cao, Shaowen
    Huang, Qian
    Zhu, Bicheng
    Yu, Jiaguo
    JOURNAL OF POWER SOURCES, 2017, 351 : 151 - 159
  • [37] Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions
    Deng, Yaqian
    Shang, Tongxin
    Wu, Zhitan
    Tao, Ying
    Luo, Chong
    Liang, Jiachen
    Han, Daliang
    Lyu, Ruiyang
    Qi, Changsheng
    Lv, Wei
    Kang, Feiyu
    Yang, Quan-Hong
    ADVANCED MATERIALS, 2019, 31 (43)
  • [38] Understanding the Role of Varying Ti3C2Tx MXene in Ni/Ti3C2Tx for the Oxygen Evolution Reaction
    Schroeder, Gabriel
    Sajjadi, Saeed
    Schmiedecke, Bastian
    Emerenciano, Aline Alencar
    Schultz, Thorsten
    Koch, Norbert
    Buldu-Akturk, Merve
    Browne, Michelle P.
    CHEMELECTROCHEM, 2025,
  • [39] Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production
    Shao, Mengmeng
    Shao, Yangfan
    Chai, Jianwei
    Qu, Yuanju
    Yang, Mingyang
    Wang, Zeli
    Yang, Ming
    Ip, Weng Fai
    Kwok, Chi Tat
    Shi, Xingqiang
    Lu, Zhouguang
    Wang, Shijie
    Wang, Xuesen
    Pan, Hui
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 16748 - 16756
  • [40] Harnessing the Power of Light: The Synergistic Effects of Crystalline Carbon Nitride and Ti3C2Tx MXene in Photocatalytic Hydrogen Production
    Wong, Khai Jie
    Foo, Joel Jie
    Siang, Tan Ji
    Khoo, Valerine
    Ong, Wee-Jun
    GLOBAL CHALLENGES, 2024, 8 (06)