Expanding g-C3N4 capabilities for photocatalytic H2 production by modification with Ti3C2Tx MXene

被引:0
|
作者
Potapenko, Kseniya O. [1 ]
Vasilchenko, Danila B. [1 ,2 ]
Kurenkova, Anna Yu. [1 ]
Saraev, Andrey A. [1 ,3 ]
Mishchenko, Denis D. [1 ,3 ]
Gerasimov, Evgeny Yu. [1 ]
Kozlova, Ekaterina A. [1 ]
机构
[1] Boreskov Inst Catalysis, 5 Ave Lavrentieva, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Nikolaev Inst Inorgan Chem, Siberian Branch, Novosibirsk 630090, Russia
[3] Boreskov Inst Catalysis, Synchrotron Radiat Facil SKIF, Nikolskiy Ave 1, Koltsov 630559, Russia
基金
俄罗斯科学基金会;
关键词
Photocatalytic hydrogen production; MXene; Visible light; Biomass; RAY PHOTOELECTRON-SPECTROSCOPY; GRAPHITIC CARBON NITRIDE; HYDROGEN-PRODUCTION; ENERGY; EXFOLIATION; COMPONENTS; EVOLUTION; GLUCOSE; ETHANOL; TIO2;
D O I
10.1016/j.ijhydene.2024.12.213
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photocatalytic hydrogen production is one of the most promising techniques for solar energy conversion. Herein, we proposed photocatalysts based on graphitic carbon nitride g-C3N4 with two-dimensional Ti3C2Tx (MXene) for photocatalytic hydrogen production under visible light (430 nm). The synthesis of the 0.5-15 wt% Ti3C2Tx/g- C3N4 photocatalysts included thermal polycondensation of melamine and urea mixture to obtain g-C3N4 with further deposition on its surface of Ti3C2Tx obtained by conventional etching technique. Bulk and surface structure of the synthesized photocatalysts was established by a set of characterization techniques. The photo- catalyst activity was tested in the photocatalytic hydrogen evolution from aqueous solutions of triethanolamine (TEOA), ethanol, and glucose. It was found that for all sacrificial agents, deposition of MXenes on the surface of g-C3N4 increased the activity in the hydrogen production. The highest activity at the level of 100 mu mol g- 1 h- 1 was achieved over 10 wt% Ti3C2Tx/g-C3N4 photocatalyst with TEOA as a sacrificial agent. In addition to the formation of hydrogen the presence of by-products, including CO, CO2, and other light hydrocarbons, was monitored. Relationships were established between the composition of the photocatalyst, the nature of the sacrificial agent and the distribution of reaction products.
引用
收藏
页码:291 / 300
页数:10
相关论文
共 50 条
  • [21] In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction
    Tongming Su
    Jundong Meng
    Ya Xiao
    Liuyun Chen
    Hongbing Ji
    Zuzeng Qin
    ChineseJournalofChemicalEngineering, 2023, 64 (12) : 76 - 86
  • [22] In situ growth of cobalt on ultrathin Ti3C2Tx as an efficient cocatalyst of g-C3N4 for enhanced photocatalytic CO2 reduction
    Su, Tongming
    Meng, Jundong
    Xiao, Ya
    Chen, Liuyun
    Ji, Hongbing
    Qin, Zuzeng
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 64 : 76 - 86
  • [23] Enhancing the magnetism of 2D carbide MXene Ti3C2Tx by H2 annealing
    Zhang, Kaiyu
    Di, Maoyun
    Fu, Lin
    Deng, Yu
    Du, Youwei
    Tang, Nujiang
    CARBON, 2020, 157 : 90 - 96
  • [24] Understanding the Role of Varying Ti3C2Tx MXene in Ni/Ti3C2Tx for the Oxygen Evolution Reaction
    Schroeder, Gabriel
    Sajjadi, Saeed
    Schmiedecke, Bastian
    Emerenciano, Aline Alencar
    Schultz, Thorsten
    Koch, Norbert
    Buldu-Akturk, Merve
    Browne, Michelle P.
    CHEMELECTROCHEM, 2025,
  • [25] Regulating interfacial coupling of 1D crystalline g-C3N4 nanorods with 2D Ti3C2Tx MXene for boosting photocatalytic CO2 reduction
    Zhong, Ruiyu
    Liang, Yujie
    Huang, Fei
    Liang, Shinuo
    Liu, Shengwei
    CHINESE JOURNAL OF CATALYSIS, 2023, 53 : 109 - 122
  • [26] Photocatalytic H2 evolution coupled with selective aromatic alcohol oxidation over nitrogen-vacancy-rich Ti3C2Tx/g-C3N4 junctions via interfacial N-Ti bonding
    Yi, Wen-Jing
    Du, Xin
    Yi, Sha-Sha
    Liu, Yanyan
    Li, Baojun
    Liu, Zhong-Yi
    Yue, Xin-Zheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (40) : 21677 - 21685
  • [27] Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity
    Liu, Wenzhu
    Sun, Mingxuan
    Ding, Zhipeng
    Gao, Bowen
    Ding, Wen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 877
  • [28] Interfacial Schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel
    Ma, Xiumin
    Ma, Zheng
    Zhang, Hongguang
    Lu, Dongzhu
    Duan, Jizhou
    Hou, Baorong
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 426
  • [29] n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation
    Zhou, Minjie
    Hou, Zhaohui
    Zhang, Li
    Liu, Yan
    Gao, Qiongzhi
    Chen, Xiaobo
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (02): : 317 - 323
  • [30] Construction of an Ultrathin S-Scheme Heterojunction Based on Few-Layer g-C3N4 and Monolayer Ti3C2Tx MXene for Photocatalytic CO2 Reduction
    Yang, Yali
    Zhang, Dainan
    Fan, Jiajie
    Liao, Yulong
    Xiang, Quanjun
    SOLAR RRL, 2021, 5 (02)