Unsupervised Canine Emotion Recognition Using Momentum Contrast

被引:2
作者
Bhave, Aarya [1 ]
Hafner, Alina [2 ]
Bhave, Anushka [1 ]
Gloor, Peter A. [1 ]
机构
[1] MIT, MIT Syst Design & Management, 77 Massachusetts Ave, Cambridge, MA 02142 USA
[2] Tech Univ Munich, TUM Sch Computat Informat & Technol, Arcisstr 21, D-80333 Munich, Germany
关键词
contrastive learning; momentum contrast; Panksepp seven emotions; canine emotions; unsupervised learning; REPRESENTATION; DOGS;
D O I
10.3390/s24227324
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We describe a system for identifying dog emotions based on dogs' facial expressions and body posture. Towards that goal, we built a dataset with 2184 images of ten popular dog breeds, grouped into seven similarly sized primal mammalian emotion categories defined by neuroscientist and psychobiologist Jaak Panksepp as 'Exploring', 'Sadness', 'Playing', 'Rage', 'Fear', 'Affectionate' and 'Lust'. We modified the contrastive learning framework MoCo (Momentum Contrast for Unsupervised Visual Representation Learning) to train it on our original dataset and achieved an accuracy of 43.2% and a baseline of 14%. We also trained this model on a second publicly available dataset that resulted in an accuracy of 48.46% but had a baseline of 25%. We compared our unsupervised approach with a supervised model based on a ResNet50 architecture. This model, when tested on our dataset with the seven Panksepp labels, resulted in an accuracy of 74.32%
引用
收藏
页数:22
相关论文
共 50 条
[41]   CHARACTERIZATION OF CANINE FOCAL LIVER LESIONS WITH CONTRAST-ENHANCED ULTRASOUND USING A NOVEL CONTRAST AGENT-SONAZOID [J].
Kanemoto, Hideyuki ;
Ohno, Koichi ;
Nakashima, Ko ;
Takahashi, Masashi ;
Fujino, Yasuhito ;
Nishimura, Ryohei ;
Tsujimoto, Hajime .
VETERINARY RADIOLOGY & ULTRASOUND, 2009, 50 (02) :188-194
[42]   Unsupervised learning of brain state dynamics during emotion imagination using high-density EEG [J].
Hsu, Sheng-Hsiou ;
Lin, Yayu ;
Onton, Julie ;
Jung, Tzyy-Ping ;
Makeig, Scott .
NEUROIMAGE, 2022, 249
[43]   MoCoUTRL: a momentum contrastive framework for unsupervised text representation learning [J].
Zou, Ao ;
Hao, Wenning ;
Jin, Dawei ;
Chen, Gang ;
Sun, Feiyan .
CONNECTION SCIENCE, 2023, 35 (01)
[44]   Unsupervised NIR-VIS Face Recognition via Homogeneous-to-Heterogeneous Learning and Residual-Invariant Enhancement [J].
Yang, Yiming ;
Hu, Weipeng ;
Hu, Haifeng .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 :2112-2126
[45]   Evaluation of canine tympanic membrane integrity using positive contrast computed tomography canalography [J].
Alves-Nores, V. ;
Plested, M. J. ;
Rubial, R. ;
Salguero, R. .
FRONTIERS IN VETERINARY SCIENCE, 2024, 11
[46]   PCAPooL: unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling [J].
Alahmadi, Amani ;
Hussain, Muhammad ;
Aboalsamh, Hatim A. ;
Zuair, Mansour .
PATTERN ANALYSIS AND APPLICATIONS, 2020, 23 (02) :673-682
[47]   Fully Unsupervised Small-Vocabulary Speech Recognition Using a Segmental Bayesian Model [J].
Kamper, Herman ;
Jansen, Aren ;
Goldwater, Sharon .
16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, :678-682
[48]   Unsupervised Activity Recognition using Trajectory Heatmaps from Inertial Measurement Unit Data [J].
Konak, Orhan ;
Wegner, Pit ;
Albert, Justin ;
Arnrich, Bert .
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2022, :304-312
[49]   InCo: Intermediate Prototype Contrast for Unsupervised Domain Adaptation [J].
Du, Yuntao ;
Luo, Hongtao ;
Yang, Haiyang ;
Jiang, Juan ;
Wang, Chongjun .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 :642-658
[50]   Unsupervised image segmentation with robust virtual class contrast [J].
Nguyen, Khang ;
Do, Kien ;
Vu, Truong ;
Than, Khoat .
PATTERN RECOGNITION LETTERS, 2023, 173 :10-16