Application of machine learning in adsorption energy storage using metal organic frameworks: A review
被引:0
|
作者:
Makhanya, Nokubonga P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South AfricaUniv Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South Africa
Makhanya, Nokubonga P.
[1
]
Kumi, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Fac Sci, Dept Chem Sci APK, POB 524,Auckland Pk, ZA-2600 Johannesburg, South AfricaUniv Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South Africa
Kumi, Michael
[2
]
Mbohwa, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept, Auckland Pk Bunting Rd Campus, ZA-2028 Johannesburg, South Africa
Tokyo Metropolitan Inst Technol, Mech Engn, Tokyo, JapanUniv Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South Africa
Mbohwa, Charles
[3
,4
]
Oboirien, Bilainu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South AfricaUniv Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South Africa
Oboirien, Bilainu
[1
]
机构:
[1] Univ Johannesburg, Dept Chem Engn, ZA-2028 Johannesburg, South Africa
[2] Univ Johannesburg, Fac Sci, Dept Chem Sci APK, POB 524,Auckland Pk, ZA-2600 Johannesburg, South Africa
[3] Univ Johannesburg, Dept, Auckland Pk Bunting Rd Campus, ZA-2028 Johannesburg, South Africa
[4] Tokyo Metropolitan Inst Technol, Mech Engn, Tokyo, Japan
Tackling the issues posed by climate change and the need to reduce greenhouse gas emissions has led to the development of novel adsorbent materials tailored for clean energy solutions. Advancements in machine learning (ML) have enabled significant progress in identifying, designing, and optimizing materials with enhanced efficiency and economic viability for clean energy applications. This review provides an overview of key ML techniques and their applications in the development of robust adsorbent materials, with particular emphasis on thermal adsorption energy storage. We examine recent progress in using ML models to predict the adsorption capacities of various gases, including HQ, CH4, COQ, and biogas, in metal-organic frameworks (MOFs). Quantitatively, ML models have achieved prediction accuracies with mean absolute errors as low as 0.1 mmol/g for hydrogen adsorption and 0.05 mmol/g for COQ adsorption in select MOFs. Pivotal case studies demonstrate how ML has expedited the performance enhancement, stability prediction, and material identification processes for MOFs, with a comparison drawn between the adsorption performance of MOFs and zeolites, where MOFs have shown up to 50 % higher gas uptake in some cases. Finally, we discuss challenges such as limited high-quality data and algorithmic complexity, while highlighting future opportunities for integrating ML with MOFs to improve adsorption energy storage. This review offers critical insights for advancing ML-assisted MOF research in clean adsorption energy applications.
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Li, Wei
Liang, Tiangui
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Liang, Tiangui
Lin, Yuanchuang
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Lin, Yuanchuang
Wu, Weixiong
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
Wu, Weixiong
Li, Song
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R ChinaJinan Univ, Energy & Elect Res Ctr, Zhuhai 519070, Peoples R China
机构:
Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
Li, Zhao
Bucior, Benjamin J.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
Bucior, Benjamin J.
Chen, Haoyuan
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
Chen, Haoyuan
Haranczyk, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, SpainNorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
Haranczyk, Maciej
Siepmann, J. Ilja
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
Univ Minnesota, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USANorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
Siepmann, J. Ilja
Snurr, Randall Q.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USANorthwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
机构:
CSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South AfricaCSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
Langmi, Henrietta W.
Ren, Jianwei
论文数: 0引用数: 0
h-index: 0
机构:
CSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South AfricaCSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
Ren, Jianwei
North, Brian
论文数: 0引用数: 0
h-index: 0
机构:
CSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South AfricaCSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
North, Brian
Mathe, Mkhulu
论文数: 0引用数: 0
h-index: 0
机构:
CSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South AfricaCSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South Africa
Mathe, Mkhulu
Bessarabov, Dmitri
论文数: 0引用数: 0
h-index: 0
机构:
North West Univ, Fac Nat Sci, CRB, HySA Infrastruct Ctr Competence, ZA-2520 Potchefstroom, South AfricaCSIR, HySA Infrastruct Ctr Competence Mat Sci & Mfg, ZA-0001 Pretoria, South Africa