Pattern Transfer for van der Waals Integration

被引:0
|
作者
Hu, Zhen [1 ,2 ]
Sun, Ruo-Xuan [1 ,2 ]
Chen, Xu-Dong [1 ,2 ]
Tian, Jianguo [1 ,2 ,3 ]
Liu, Zhibo [1 ,2 ,3 ,4 ]
机构
[1] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Teda Appl Phys Inst, Tianjin 300071, Peoples R China
[3] Nankai Univ, Renewable Energy Convers & Storage Ctr, Tianjin 300071, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
two-dimensional materials; van der Waals integration; transfer; twisted graphene; van der Waals contact; UNCONVENTIONAL SUPERCONDUCTIVITY; CONTACT RESISTANCE; GRAPHENE FILMS; BILAYER; LIMIT;
D O I
10.1021/acsaelm.4c01664
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Atomically thin two-dimensional materials are promising candidates for designing functional electronic and optical devices through van der Waals integration. However, the route toward advanced devices typically involves transferring all prefabricated source materials onto target substrates, with significant reliance on post-transfer masking and etching operations to remove undesirable components. The existing transfer technologies are based on spin-coated polymeric carriers lacking controllable geometry, thereby limiting their ability to selectively transfer only the designated components of the source materials. Here, we introduce a pattern transfer technology for picking out the desired components from source materials on demand by rapidly patterning scalable polymeric transfer carriers into the required shapes and sizes. Patterned carriers provide the advantages of twist-angle controllability and one-step preparation of ready-to-transfer electrodes, enabling the formation of supermoire homostructures and van der Waals electrical contacts. These capabilities of the pattern transfer technology offer great potential for the design and versatile integration of multifunctional van der Waals devices and drive forward the industrial application of two-dimensional materials.
引用
收藏
页码:8463 / 8473
页数:11
相关论文
共 50 条
  • [21] Van der Waals integration: Enables quantum explorations and innovative devices
    Qian, Qi
    MRS BULLETIN, 2024, 49 (04) : 385 - 390
  • [22] Van der Waals integration: Enables quantum explorations and innovative devices
    Qi Qian
    MRS Bulletin, 2024, 49 : 385 - 390
  • [23] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [24] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [25] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [26] Van der Waals heterostructures
    Nature Reviews Methods Primers, 2
  • [27] Van der Waals heterostructures
    A. K. Geim
    I. V. Grigorieva
    Nature, 2013, 499 : 419 - 425
  • [28] Van der Waals quintessence
    Capozziello, S
    De Martino, S
    Falanga, M
    PHYSICS LETTERS A, 2002, 299 (5-6) : 494 - 498
  • [29] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    NATURE, 2013, 499 (7459) : 419 - 425
  • [30] Van der Waals superlattices
    Huaying Ren
    Zhong Wan
    Xiangfeng Duan
    National Science Review, 2022, 9 (05) : 14 - 16