Dimensionality reduction by combining category information and latent semantic index for text categorization

被引:0
作者
Zheng, Wenbin [1 ]
An, Lixin [1 ,2 ]
Xu, Zhanyi [1 ]
机构
[1] College of Information Engineering, China Jiliang University
[2] College of Textiles, Donghua University
来源
Journal of Information and Computational Science | 2013年 / 10卷 / 08期
关键词
Category information; Dimensionality reduction; Latent semantic indexing; Text categorization;
D O I
10.12733/jics20101814
中图分类号
学科分类号
摘要
The Latent Semantic Indexing (LSI) is a commonly used dimensionality reduction methods in text categorization; however, as a linear reconstructed method, its goal is to obtain the optimal representative feature rather than the optimal classification feature. This paper proposes a novel method in which the categorization information is combined into the latent semantic indexing to obtain more discriminating features than the standard latent semantic indexing. The experimental results show that the proposed method achieves good performance on two benchmark data sets, especially in the case where the dimensionality is greatly reduced. Copyright © 2013 Binary Information Press.
引用
收藏
页码:2463 / 2469
页数:6
相关论文
共 22 条
  • [1] Dimensionality Reduction with Category Information Fusion and Non-negative Matrix Factorization for Text Categorization
    Zheng, Wenbin
    Qian, Yuntao
    Tang, Hong
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 505 - +
  • [2] AN EMPIRICAL EVALUATION OF DIMENSIONALITY REDUCTION USING LATENT SEMANTIC ANALYSIS ON HINDI TEXT
    Krishnamurthi, Karthik
    Sudi, Ravi Kumar
    Panuganti, Vijayapal Reddy
    Bulusu, Vishnu Vardhan
    2013 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP 2013), 2013, : 21 - 24
  • [3] Aggressive Dimensionality Reduction with Reinforcement Local Feature Selection for Text Categorization
    Zheng, Wenbin
    Qian, Yuntao
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 365 - 372
  • [4] Latent semantic analysis for text categorization using neural network
    Yu, Bo
    Xu, Zong-ben
    Li, Cheng-hua
    KNOWLEDGE-BASED SYSTEMS, 2008, 21 (08) : 900 - 904
  • [5] A two-stage feature selection method for text categorization by using category correlation degree and latent semantic indexing
    Wang F.
    Li C.-H.
    Wang J.-S.
    Xu J.
    Li L.
    J. Shanghai Jiaotong Univ. Sci., 1 (44-50): : 44 - 50
  • [6] A Two-Stage Feature Selection Method for Text Categorization by Using Category Correlation Degree and Latent Semantic Indexing
    王飞
    李彩虹
    王景山
    徐娇
    李廉
    JournalofShanghaiJiaotongUniversity(Science), 2015, 20 (01) : 44 - 50
  • [7] A Comprehensive Analysis of using Semantic Information in Text Categorization
    Celik, Kerem
    Gungor, Tunga
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (IEEE INISTA), 2013,
  • [8] Dimensionality Reduction by Mutual Information for Text Classification
    刘丽珍
    宋瀚涛
    陆玉昌
    Journal of Beijing Institute of Technology, 2005, (01) : 32 - 36
  • [9] Combining local and global information for nonlinear dimensionality reduction
    Wang, Qinggang
    Li, Jianwei
    NEUROCOMPUTING, 2009, 72 (10-12) : 2235 - 2241
  • [10] Text Dimensionality Reduction with Mutual Information Preserving Mapping
    Yang Zhen
    Yao Fei
    Fan Kefeng
    Huang Jian
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (05) : 919 - 925