Learning parameters in canonical models using weighted least squares

被引:0
作者
Nowak, Krzysztof [1 ,3 ]
Druzdzel, Marek J. [1 ,2 ]
机构
[1] Bialystok University of Technology, Białystok
[2] School of Information Sciences, Pittsburgh
[3] European Space Agency, Noordwijk
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8754卷
基金
美国国家卫生研究院;
关键词
Bayesian networks; canonical models; noisy–MAX gates; parameter learning; weighted least squares;
D O I
10.1007/978-3-319-11433-0_24
中图分类号
学科分类号
摘要
We propose a novel approach to learning parameters of canonical models from small data sets using a concept employed in regression analysis: weighted least squares method. We assess the performance of our method experimentally and show that it typically outperforms simple methods used in the literature in terms of accuracy of the learned conditional probability distributions. © 2014 Springer International Publishing Switzerland.
引用
收藏
页码:366 / 381
页数:15
相关论文
共 50 条
  • [21] Automated Microwave Filter Tuning Using Curve Similarity and Weighted Least Squares
    Kwak, Changsoo
    Uhm, Manseok
    Yom, Inbok
    Eom, Hyo Joon
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (10) : 539 - 541
  • [22] A condition analysis of the weighted linear least squares problem using dual norms
    Diao, Huai-An
    Liang, Liming
    Qiao, Sanzheng
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06) : 1085 - 1103
  • [23] The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters
    Wu, Fei
    Deng, Kazhong
    Chang, Guobin
    Wang, Qianxin
    ACTA GEODAETICA ET GEOPHYSICA, 2018, 53 (02) : 247 - 257
  • [24] Testing the efficiency of the futures market for crude oil using weighted least squares
    Stevens, J.
    APPLIED ECONOMICS LETTERS, 2013, 20 (18) : 1611 - 1613
  • [25] The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters
    Fei Wu
    Kazhong Deng
    Guobin Chang
    Qianxin Wang
    Acta Geodaetica et Geophysica, 2018, 53 : 247 - 257
  • [26] On stable perturbations of the stiffly weighted pseudoinverse and weighted least squares problem
    Wei, MS
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (05) : 527 - 536
  • [27] Density Weighted Least Squares Support Vector Machine
    Xu Shuqiong
    Yuan Conggui
    Zhang Xinzheng
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 5310 - 5314
  • [28] Weighted least squares for archetypal analysis with missing data
    Giordani P.
    Kiers H.A.L.
    Behaviormetrika, 2024, 51 (1) : 441 - 475
  • [29] Markdown Optimization with Generalized Weighted Least Squares Estimation
    Mustafa Hekimoğlu
    International Journal of Computational Intelligence Systems, 15
  • [30] On Weighted Least Squares Estimators for Chirp Like Model
    Debasis Kundu
    Swagata Nandi
    Rhythm Grover
    Sankhya A, 2024, 86 : 27 - 66