Learning parameters in canonical models using weighted least squares

被引:0
作者
Nowak, Krzysztof [1 ,3 ]
Druzdzel, Marek J. [1 ,2 ]
机构
[1] Bialystok University of Technology, Białystok
[2] School of Information Sciences, Pittsburgh
[3] European Space Agency, Noordwijk
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8754卷
基金
美国国家卫生研究院;
关键词
Bayesian networks; canonical models; noisy–MAX gates; parameter learning; weighted least squares;
D O I
10.1007/978-3-319-11433-0_24
中图分类号
学科分类号
摘要
We propose a novel approach to learning parameters of canonical models from small data sets using a concept employed in regression analysis: weighted least squares method. We assess the performance of our method experimentally and show that it typically outperforms simple methods used in the literature in terms of accuracy of the learned conditional probability distributions. © 2014 Springer International Publishing Switzerland.
引用
收藏
页码:366 / 381
页数:15
相关论文
共 50 条
[21]   Automated Microwave Filter Tuning Using Curve Similarity and Weighted Least Squares [J].
Kwak, Changsoo ;
Uhm, Manseok ;
Yom, Inbok ;
Eom, Hyo Joon .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (10) :539-541
[22]   A condition analysis of the weighted linear least squares problem using dual norms [J].
Diao, Huai-An ;
Liang, Liming ;
Qiao, Sanzheng .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (06) :1085-1103
[23]   The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters [J].
Wu, Fei ;
Deng, Kazhong ;
Chang, Guobin ;
Wang, Qianxin .
ACTA GEODAETICA ET GEOPHYSICA, 2018, 53 (02) :247-257
[24]   Testing the efficiency of the futures market for crude oil using weighted least squares [J].
Stevens, J. .
APPLIED ECONOMICS LETTERS, 2013, 20 (18) :1611-1613
[25]   The application of a combination of weighted least-squares and autoregressive methods in predictions of polar motion parameters [J].
Fei Wu ;
Kazhong Deng ;
Guobin Chang ;
Qianxin Wang .
Acta Geodaetica et Geophysica, 2018, 53 :247-257
[26]   On stable perturbations of the stiffly weighted pseudoinverse and weighted least squares problem [J].
Wei, MS .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (05) :527-536
[27]   Density Weighted Least Squares Support Vector Machine [J].
Xu Shuqiong ;
Yuan Conggui ;
Zhang Xinzheng .
2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, :5310-5314
[28]   Markdown Optimization with Generalized Weighted Least Squares Estimation [J].
Mustafa Hekimoğlu .
International Journal of Computational Intelligence Systems, 15
[29]   Weighted least squares for archetypal analysis with missing data [J].
Giordani P. ;
Kiers H.A.L. .
Behaviormetrika, 2024, 51 (1) :441-475
[30]   On Weighted Least Squares Estimators for Chirp Like Model [J].
Debasis Kundu ;
Swagata Nandi ;
Rhythm Grover .
Sankhya A, 2024, 86 :27-66