Predicting the Open Porosity of Industrial Mortar Applied on Different Substrates: A Machine Learning Approach

被引:0
|
作者
Travincas, Rafael [1 ]
Mendes, Maria Paula [2 ]
Torres, Isabel [3 ,4 ]
Flores-Colen, Ines [5 ]
机构
[1] Mil Inst Engn IME, Dept Mat Sci, Praca Gen Tiburcio 80, BR-22290270 Urca, RJ, Brazil
[2] Univ Lisbon, CERENA Ctr Nat Resources & Environm, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Univ Coimbra, Dept Civil Engn, CERIS, Rua Luis Reis Santos Polo II, P-3030788 Coimbra, Portugal
[4] Itecons Inst Res & Technol Dev Construct Energy En, Rua Pedro Hispano, P-3030289 Coimbra, Portugal
[5] Univ Lisbon, Dept Civil Engn Architecture & Environm, CERIS, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 23期
关键词
random forest; support vector machine; industrial mortar; substrate; prediction;
D O I
10.3390/app142310780
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aims to evaluate the potential of machine learning algorithms (Random Forest and Support Vector Machine) in predicting the open porosity of a general-use industrial mortar applied to different substrates based on the characteristics of both the mortar and substrates. This study's novelty lies in predicting the mortar's porosity considering the substrate's influence on which this mortar is applied. For this purpose, an experimental database comprising 1592 datapoints of industrial mortar applied to five different substrates (hollowed ceramic brick, solid ceramic brick, concrete block, concrete slab, and lightweight concrete block) was generated using an experimental program. The samples were characterized by bulk density, open porosity, capillary water absorption coefficient, drying index, and compressive strength. This database was then used to train and test the machine learning algorithms to predict the open porosity of the mortar. The results indicate that it is possible to predict the open porosity of mortar with good prediction accuracy, and that both Random Forest (RF) and Support Vector Machine (SVM) algorithms (RF = 0.880; SVM = 0.896) are suitable for this task. Regarding the main characteristics that influence the open porosity of the mortar, the bulk density and open porosity of the substrate are significant factors. Furthermore, this study employs a straightforward methodology with a machine learning no-code platform, enhancing the replicability of its findings for future research and practical implementations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Performance and Accelerated Ageing of an Industrial Hydraulic Lime Mortar Applied on Different Substrates
    Travincas, Rafael
    Silveira, Dora
    Bellei, Poliana
    Gouveia, Joao
    Matias, Gina
    Torres, Isabel
    Flores-Colen, Ines
    COATINGS, 2024, 14 (07)
  • [2] Comparison of machine learning techniques for predicting porosity of chalk
    Nourani, Meysam
    Alali, Najeh
    Samadianfard, Saeed
    Band, Shahab S.
    Chau, Kwok-wing
    Shu, Chi-Min
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 209
  • [3] Predicting the Stability of Open Stopes Using Machine Learning
    Szmigiel, Alicja
    Apel, Derek B.
    JOURNAL OF SUSTAINABLE MINING, 2022, 21 (03): : 241 - 248
  • [4] Predicting the mortality of patients with Covid-19: A machine learning approach
    Emami, Hassan
    Rabiei, Reza
    Sohrabei, Solmaz
    Atashi, Alireza
    HEALTH SCIENCE REPORTS, 2023, 6 (04)
  • [5] Predicting benzodiazepine prescriptions: A proof-of-concept machine learning approach
    Kinney, Kerry L.
    Zheng, Yufeng
    Morris, Matthew C.
    Schumacher, Julie A.
    Bhardwaj, Saurabh B.
    Rowlett, James K.
    FRONTIERS IN PSYCHIATRY, 2023, 14
  • [6] Machine learning approach for predicting and evaluating California bearing ratio of stabilized soil containing industrial waste
    Ho, Lanh Si
    Tran, Van Quan
    JOURNAL OF CLEANER PRODUCTION, 2022, 370
  • [7] Comparing different machine learning techniques for predicting COVID-19 severity
    Xiong, Yibai
    Ma, Yan
    Ruan, Lianguo
    Li, Dan
    Lu, Cheng
    Huang, Luqi
    INFECTIOUS DISEASES OF POVERTY, 2022, 11 (01)
  • [8] Comparing different machine learning techniques for predicting COVID-19 severity
    Yibai Xiong
    Yan Ma
    Lianguo Ruan
    Dan Li
    Cheng Lu
    Luqi Huang
    Infectious Diseases of Poverty, 11
  • [9] Explaining and predicting employees’ attrition: a machine learning approach
    Praphula Kumar Jain
    Madhur Jain
    Rajendra Pamula
    SN Applied Sciences, 2020, 2
  • [10] Applied machine learning for predicting the lanthanide-ligand binding affinities
    Chaube, Suryanaman
    Srinivasan, Sriram Goverapet
    Rai, Beena
    SCIENTIFIC REPORTS, 2020, 10 (01)