Phonon polariton-mediated heat conduction: Perspectives from recent progress

被引:0
作者
Li, Deyu [1 ]
Pan, Zhiliang [1 ]
Caldwell, Joshua D. [1 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
Phonon polaritons; Surface phonon polaritons; Thermal transport; Heat conduction; Thermal conductivity; FIELD;
D O I
10.1557/s43578-024-01470-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has been well-accepted that heat conduction in solids is mainly mediated by electrons and phonons. Recently, there has been a strong emerging interest in the contribution of various polaritons, quasi-particles resulting from the coupling between electromagnetic waves and different excitations in solids, to heat conduction. Traditionally, the polaritonic effect on conduction has been largely neglected because of the low number density of polaritons. However, it has been recently predicted and experimentally confirmed that polaritons could play significant roles in heat conduction in polar nanostructures. Since the transport characteristics of polaritons are very different from those of electrons and phonons, polariton-mediated heat conduction provides new opportunities for manipulating heat flow in solid-state devices for more efficient heat dissipation or energy conversion. In view of the rapid growth of polariton-mediated heat conduction, especially by phonon polaritons, here we review the recent progress in this field and provide perspectives for challenges and opportunities.
引用
收藏
页码:3193 / 3201
页数:9
相关论文
共 44 条
[1]  
Basov DN., 2021, FRONT OPT PHOTON, V10, P565, DOI [10.1515/9783110710687-044, DOI 10.1515/9783110710687-044]
[2]  
Byrnes T, 2014, NAT PHYS, V10, P803, DOI [10.1038/NPHYS3143, 10.1038/nphys3143]
[3]   Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons [J].
Caldwell, Joshua D. ;
Lindsay, Lucas ;
Giannini, Vincenzo ;
Vurgaftman, Igor ;
Reinecke, Thomas L. ;
Maier, Stefan A. ;
Glembocki, Orest J. .
NANOPHOTONICS, 2015, 4 (01) :44-68
[4]   Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride [J].
Caldwell, Joshua D. ;
Kretinin, Andrey V. ;
Chen, Yiguo ;
Giannini, Vincenzo ;
Fogler, Michael M. ;
Francescato, Yan ;
Ellis, Chase T. ;
Tischler, Joseph G. ;
Woods, Colin R. ;
Giles, Alexander J. ;
Hong, Minghui ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Maier, Stefan A. ;
Novoselov, Kostya S. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Near-field effects in spatial coherence of thermal sources [J].
Carminati, R ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1660-1663
[6]   Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films [J].
Chen, DZA ;
Narayanaswamy, A ;
Chen, G .
PHYSICAL REVIEW B, 2005, 72 (15)
[7]   Greatly Enhanced Radiative Transfer Enabled by Hyperbolic Phonon Polaritons in α-MoO3 [J].
Chen, Yikang ;
Pacheco, Mauricio A. Segovia ;
Salihoglu, Hakan ;
Xu, Xianfan .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
[8]   Temperature-dependent in-plane thermal conductivity of SrTiO3 membranes enhanced by surface phonon polaritons [J].
Cheng, Tao ;
Zhao, Huanhuan ;
Liu, Linhua ;
Yang, Jia-Yue .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 202
[9]   Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride [J].
Dai, S. ;
Fei, Z. ;
Ma, Q. ;
Rodin, A. S. ;
Wagner, M. ;
McLeod, A. S. ;
Liu, M. K. ;
Gannett, W. ;
Regan, W. ;
Watanabe, K. ;
Taniguchi, T. ;
Thiemens, M. ;
Dominguez, G. ;
Castro Neto, A. H. ;
Zettl, A. ;
Keilmann, F. ;
Jarillo-Herrero, P. ;
Fogler, M. M. ;
Basov, D. N. .
SCIENCE, 2014, 343 (6175) :1125-1129
[10]  
ENGLMAN R, 1968, J PHYS PART C SOLID, V1, P614, DOI 10.1088/0022-3719/1/3/309