Belief hierarchical clustering

被引:5
作者
Maalel, Wiem [1 ,2 ]
Zhou, Kuang [1 ,2 ]
Martin, Arnaud [1 ,2 ]
Elouedi, Zied [1 ,2 ]
机构
[1] LARODEC, ISG.41 rue de la Libert´e
[2] IRISA, Universit´e de Rennes 1, IUT de Lannion, Rue Edouard Branly BP 30219, Lannion cedex
来源
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | 2014年 / 8764卷
关键词
Belief clustering; Belief function; Clustering; Hierarchical clustering;
D O I
10.1007/978-3-319-11191-9_8
中图分类号
学科分类号
摘要
In the data mining field many clustering methods have been proposed, yet standard versions do not take into account uncertain databases. This paper deals with a new approach to cluster uncertain data by using a hierarchical clustering defined within the belief function framework. The main objective of the belief hierarchical clustering is to allow an object to belong to one or several clusters. To each belonging, a degree of belief is associated, and clusters are combined based on the pignistic properties. Experiments with real uncertain data show that our proposed method can be considered as a propitious tool. © Springer International Publishing Switzerland 2014.
引用
收藏
页码:68 / 76
页数:8
相关论文
共 12 条
[1]  
Bezdek J.C., Ehrlich R., Fulls W., Fcm: The fuzzy c-means clustering algorithm, Computers and Geosciences, 10, 2-3, pp. 191-203, (1984)
[2]  
Denoeux T., A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 25, 5, pp. 804-813, (1995)
[3]  
Denoeux T., Masson M., EVCLUS: Evidential Clustering of Proximity Data, IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 34, 1, pp. 95-109, (2004)
[4]  
Ben Hariz S., Elouedi Z., Mellouli K., Clustering approach using belief function theory, AIMSA, pp. 162-171, (2006)
[5]  
Hastie T., Tibshirani R., Friedman J., Franklin J., The Elements of Statistical Learning
[6]  
Data Mining, Inference and Prediction, (2001)
[7]  
Macqueen J., Some methods for classification and analysis of multivariate observations, Proceedings of the 5Th Berkeley Symposium on Mathematical Statistics and Probability, 11, (1967)
[8]  
Masson M., Denoeux T., Clustering interval-valued proximity data using belief functions, Pattern Recognition Letters, 25, pp. 163-171, (2004)
[9]  
Schubert J., Clustering belief functions based on attracting and conflicting met-alevel evidence, Intelligent Systems for Information Processing: From Representation to Applications, (2003)
[10]  
Shafer G., Mathematical Theory of evidence, (1976)