Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning

被引:4
|
作者
Lu, Xingchi [1 ]
Yao, Xuejian [1 ]
Jiang, Quansheng [1 ]
Shen, Yehu [1 ]
Xu, Fengyu [2 ]
Zhu, Qixin [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Mech Engn, Suzhou 215009, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
RUL prediction; Rolling bearing; Domain adaptation; Attention contrastive learning; Pseudo-label;
D O I
10.1016/j.compind.2024.104172
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Performance degradation and remaining useful life (RUL) prediction are of great significance in improving the reliability of mechanical equipment. Existing cross-domain RUL prediction methods usually reduce data distribution discrepancy by domain adaptation, to overcome domain shift under cross-domain conditions. However, the fine-grained information between cross-domain degradation features and the specific characteristics of the target domain are often ignored, which limits the prediction performance. Aiming at these issues, a RUL prediction method based on dynamic hybrid domain adaptation (DHDA) and attention contrastive learning (A-CL) is proposed for the cross-domain rolling bearings. In the DHDA module, the conditional distribution alignment is achieved by the designed pseudo-label-guided domain adversarial network, and is assigned with a dynamic penalty term to dynamically adjust the conditional distribution when aligning the joint distribution, for improving the fine-grainedness of domain adaptation. The A-CL module aims to help the prediction model actively extract the degradation information of the target domain, to generate the degradation features that match the characteristics of the target domain, for improving the robustness of RUL prediction. Then, the proposed method is verified by the ablation and comparison experiments conducted on PHM2012 and XJTU-SY datasets. The results show that the proposed method performs high accuracy for cross-domain RUL prediction with good generalization performance under three different cross-domain scenarios.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Deep multiscale feature fusion network with dual attention for rolling bearing remaining useful life prediction
    Yang, Yingming
    Wang, Zhihai
    Liu, Xiaoqin
    Liu, Tao
    Luo, Zhuopeng
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] Partial Domain Adaptation in Remaining Useful Life Prediction With Incomplete Target Data
    Li, Xiang
    Zhang, Wei
    Li, Xu
    Hao, Hongshen
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024, 29 (03) : 1903 - 1913
  • [23] Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction
    Nejjar, Ismail
    Geissmann, Fabian
    Zhao, Mengjie
    Taal, Cees
    Fink, Olga
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [24] Stages prediction of the remaining useful life of rolling bearing based on regularized extreme learning machine
    Wu, Chenchen
    Sun, Hongchun
    Zhang, Zihan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (22) : 6599 - 6610
  • [25] Remaining useful life prediction method of rolling bearing based on Transformer model
    Zhou Z.
    Liu L.
    Song X.
    Chen K.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (02): : 430 - 443
  • [26] Multisource cross-domain fault diagnosis of rolling bearing based on subdomain adaptation network
    Wang, Zhichao
    Huang, Wentao
    Chen, Yi
    Jiang, Yunchuan
    Peng, Gaoliang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [27] Remaining Useful Life Prediction of Rolling Bearing Based on Multi-Domain Mixed Features and Temporal Convolutional Networks
    Cao, Xiangang
    Zhang, Fuqiang
    Zhao, Jiangbin
    Duan, Yong
    Guo, Xingyu
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [28] A novel meta-learning network with adversarial domain-adaptation and attention mechanism for cross-domain for train bearing fault diagnosis
    Zhong, Hao
    He, Deqiang
    Wei, Zexian
    Jin, Zhenzhen
    Lao, Zhenpeng
    Xiang, Zaiyu
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [29] Interpretable operational condition attention-informed domain adaptation network for remaining useful life prediction under variable operational conditions
    Lei, Zihao
    Su, Yu
    Feng, Ke
    Wen, Guangrui
    CONTROL ENGINEERING PRACTICE, 2024, 153
  • [30] A multi-constrained domain adaptation network for remaining useful life prediction of bearings
    Dong, Xingjun
    Zhang, Changsheng
    Liu, Hanrui
    Wang, Dawei
    Wang, Tong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 206