Function projective synchronization and parameter identification of different fractional-order hyper-chaotic systems

被引:0
|
作者
机构
[1] [1,Dong, Jun
[2] 1,Zhang, Guang-Jun
[3] Yao, Hong
[4] Wang, Jue
来源
Zhang, G.-J. (zhanggj3@126.com) | 1600年 / Science Press卷 / 35期
关键词
Numerical methods - Controllers - Synchronization - Uncertainty analysis - Parameter estimation;
D O I
10.3724/SP.J.1146.2012.01463
中图分类号
学科分类号
摘要
The function projective synchronization and parameter identification between the fractional-order chaotic system and hyper-chaotic system with uncertain parameters are researched, in which the fractional-order Chen chaotic system and the new fractional-order hyper-chaotic system are as examples. First, based on the fractional theory of stability and nonlinear dynamic theory, the nonlinear controller and parameter identification rules are designed. And by the nonlinear controller the function projective synchronization between the fractional-order 3D chaotic system and 4D hyper-chaotic system with uncertain parameters are realized. At the same time, the uncertain parameters are identified. Second, based on the fractional-order theory of stability the synchronization are proved strictly in mathematics. Finally, by the Predictor-Corrector scheme numerical simulation, the validity of the presented method is verified.
引用
收藏
相关论文
共 50 条
  • [41] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Zhou, Yan
    Wang, Hongxing
    Liu, Heng
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) : 823 - 836
  • [42] Chaotic synchronization between different fractional-order chaotic systems
    Zhou, Ping
    Ding, Rui
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (10): : 2839 - 2848
  • [43] Projective synchronization of different fractional-order chaotic systems with non-identical orders
    Si, Gangquan
    Sun, Zhiyong
    Zhang, Yanbin
    Chen, Wenquan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1761 - 1771
  • [44] Generalized Function Projective Synchronization of Incommensurate Fractional-Order Chaotic Systems with Inputs Saturation
    Yan Zhou
    Hongxing Wang
    Heng Liu
    International Journal of Fuzzy Systems, 2019, 21 : 823 - 836
  • [45] Modified Function Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions
    Liu, Hong-Juan
    Zhu, Zhi-Liang
    Yu, Hai
    Zhu, Qian
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2013, 2013
  • [46] Synchronization of fractional-order chaotic systems with different structures
    Zhang Ruo-Xun
    Yang Shi-Ping
    ACTA PHYSICA SINICA, 2008, 57 (11) : 6852 - 6858
  • [47] Hybrid Projective Synchronization for Two Identical Fractional-Order Chaotic Systems
    Zhou, Ping
    Ding, Rui
    Cao, Yu-xia
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [48] The Projective Synchronization of Fractional-order Multi-scroll Chaotic Systems
    Shao, Xiaodan
    Chen, Feng
    PROCEEDINGS OF THE 2015 4TH INTERNATIONAL CONFERENCE ON SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS, 2016, 43 : 681 - 684
  • [49] Complex Modified Projective Synchronization for Fractional-order Chaotic Complex Systems
    Cui-Mei Jiang
    Shu-Tang Liu
    Fang-Fang Zhang
    International Journal of Automation and Computing, 2018, 15 (05) : 603 - 615
  • [50] Projective synchronization via feedback controller of fractional-order chaotic systems
    Khan, Ayub
    Bhat, Muzaffar Ahmad
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2020, 40 (05): : 366 - 374