Function projective synchronization and parameter identification of different fractional-order hyper-chaotic systems

被引:0
作者
机构
[1] College of Science, Air Force Engineering University
[2] School of Life Science and Technology, Xi'an Jiaotong University
[3] The First Aeronautical Institute of Air Force
来源
Zhang, G.-J. (zhanggj3@126.com) | 1600年 / Science Press卷 / 35期
关键词
Fractional-order; Function projective synchronization; Hyper-chaotic system; Nonlinear controller; Parameters identification;
D O I
10.3724/SP.J.1146.2012.01463
中图分类号
学科分类号
摘要
The function projective synchronization and parameter identification between the fractional-order chaotic system and hyper-chaotic system with uncertain parameters are researched, in which the fractional-order Chen chaotic system and the new fractional-order hyper-chaotic system are as examples. First, based on the fractional theory of stability and nonlinear dynamic theory, the nonlinear controller and parameter identification rules are designed. And by the nonlinear controller the function projective synchronization between the fractional-order 3D chaotic system and 4D hyper-chaotic system with uncertain parameters are realized. At the same time, the uncertain parameters are identified. Second, based on the fractional-order theory of stability the synchronization are proved strictly in mathematics. Finally, by the Predictor-Corrector scheme numerical simulation, the validity of the presented method is verified.
引用
收藏
页码:1371 / 1375
页数:4
相关论文
共 15 条
  • [1] Grigorenko I., Grigorenko E., Chaotic dynamics of the fractional Lorenz system, Physical Review Letters, 91, 3, pp. 034101-4, (2003)
  • [2] Li C.P., Peng G.J., Chaos in Chen's system with a fractional order, Chaos Solitons & Fractals, 22, 2, pp. 443-450, (2004)
  • [3] Li C.G., Chen G.R., Chaos in the fractional order Chen system and its control, Chaos Solitons & Fractals, 22, 3, pp. 549-554, (2004)
  • [4] Mainieri R., Rehacek J., Projective synchronization in three-dimensional chaotic systems, Physical Review Letters, 82, 15, pp. 3042-3045, (1999)
  • [5] Zheng H.Z., Hu J.F., Xu W., Et al., Study on synchronization of a new class of hyper-chaotic systems using nonlinear feedback control, Journal of Electronics & Information Technology, 33, 4, pp. 844-848, (2011)
  • [6] Abdurahman K., Wang X.Y., Zhao Y.Z., Projective synchronization for unified hyperchaotic system, Acta Physica Sinica, 60, 4, (2011)
  • [7] Min F.H., Wang Z.Q., Generalized synchronization for two same or different new hyper-chaotic systems, Journal of Electronics & Information Technology, 30, 12, pp. 3031-3034, (2008)
  • [8] Sun N., Zhang H.G., Wang Z.L., Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems, Acta Physica Sinica, 60, 5, (2011)
  • [9] Zhang Z.H., Gao J.F., Synchronization and control between different chaotic systems with uncertain parameters, Journal of Zhengzhou University, 32, 6, pp. 117-120, (2011)
  • [10] Hu J.B., Han Y., Zhao L.D., Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters, Acta Physica Sinica, 58, 3, pp. 1441-1445, (2009)