Granular concept-enhanced relational graph convolution networks for link prediction in knowledge graph

被引:0
|
作者
Dai, Yuhao [1 ,2 ]
Yan, Mengyu [1 ,2 ]
Li, Jinhai
机构
[1] Kunming Univ Sci & Technol, Fac Sci, Kunming 650500, Yunnan, Peoples R China
[2] Kunming Univ Sci & Technol, Data Sci Res Ctr, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge graph; Link prediction; Formal concept analysis; Graph convolution networks; Granular computing;
D O I
10.1016/j.ins.2024.121698
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Link prediction is a task of completing absent triplets by leveraging existing triplets in KG and the ultimate goal is to mitigate the incompleteness and sparsity of KG in terms of content. As well known, Relational Graph Convolutional Networks (R-GCN) model is a promising method for link prediction due to its capability of the graph structure. However, R-GCN mainly relies on information from adjacent nodes, leading to shortcomings in the model for capturing a wider range of relational information. Meanwhile, Formal Concept Analysis (FCA) is increasingly being applied in various fields as an effective data analysis tool. Inspired by this, we integrate FCA into R-GCN to address the shortcomings of R-GCN mentioned above. Specifically, a formal context is first created according to the entities and relations, and granular concepts can be obtained by the formal context. Then the weights of the relational parameters in R-GCN are redistributed based on similarity of granular concepts. Further we develop granular concept-enhanced relational graph convolution networks (GCR-GCN) model, where granular concept can simulate the process of data conceptualization in human brain very well, so it has stronger interpretability compared to the black-box characteristic of R-GCN. Finally, experimental results demonstrate that the GCRGCN model improves the effectiveness of link prediction by effectively assigning different weights to entities with the same relation. In addition, the granular concept effectively improves the computational efficiency of the model and reduces the storage pressure of the model during computation.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Knowledge Graph Entity Type Prediction with Relational Aggregation Graph Attention Network
    Zou, Changlong
    An, Jingmin
    Li, Guanyu
    SEMANTIC WEB, ESWC 2022, 2022, 13261 : 39 - 55
  • [22] Impact of Injecting Ground Truth Explanations on Relational Graph Convolutional Networks and their Explanation Methods for Link Prediction on Knowledge Graphs
    Halliwell, Nicholas
    Landon, Fabien
    Lccuc, Freddy
    2022 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT, 2022, : 288 - 295
  • [23] A Survey on Knowledge Graph Embeddings for Link Prediction
    Wang, Meihong
    Qiu, Linling
    Wang, Xiaoli
    SYMMETRY-BASEL, 2021, 13 (03):
  • [24] Dynamic network link prediction based on sequential graph convolution
    Liu L.
    Feng Z.
    Shu J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (02): : 518 - 528
  • [25] Knowledge graph embedding based on dynamic adaptive atrous convolution and attention mechanism for link prediction
    Deng, Weibin
    Zhang, Yiteng
    Yu, Hong
    Li, Hongxing
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [26] The Research of Link Prediction in Knowledge Graph based on Distance Constraint
    Wei, Linlu
    Liu, Fangfang
    2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 68 - 75
  • [27] A Collaborative Filtering Model for Link Prediction of Fusion Knowledge Graph
    Yu, Zaifu
    Shang, Wenqian
    Lin, Weiguo
    Huang, Wei
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 33 - 38
  • [28] Knowledge graph embedding by projection and rotation on hyperplanes for link prediction
    Thanh Le
    Ngoc Huynh
    Bac Le
    APPLIED INTELLIGENCE, 2023, 53 (09) : 10340 - 10364
  • [29] Complex graph convolutional network for link prediction in knowledge graphs
    Zeb, Adnan
    Saif, Summaya
    Chen, Junde
    Ul Haq, Anwar
    Gong, Zhiguo
    Zhang, Defu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 200
  • [30] A Novel Deep Learning Model for Link Prediction of Knowledge Graph
    Ding, Shuai
    Lai, Qinghan
    Zhou, Zihan
    Gong, Jinghao
    Cui, Jin'an
    Liu, Song
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2477 - 2481