Real-Time Human Group Detection and Clustering in Crowded Environments Using Enhanced Multi-Object Tracking

被引:0
|
作者
Lee, Hyunmin [1 ]
Kang, Donggoo [2 ]
Park, Hasil [2 ]
Park, Sangwoo [2 ]
Jeong, Dasol [2 ]
Paik, Joonki [1 ,2 ]
机构
[1] Chung Ang Univ, Dept Artificial Intelligence, Seoul 06974, South Korea
[2] Chung Ang Univ, Dept Image, Seoul 06974, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
基金
新加坡国家研究基金会;
关键词
Pedestrians; Real-time systems; Accuracy; Heuristic algorithms; Tracking; Object recognition; Faces; Deep learning; Airports; Visualization; Multi-object tracking; visual surveillance; group detection;
D O I
10.1109/ACCESS.2024.3503661
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Group detection is a critical yet challenging task in video-based applications such as surveillance analysis, especially in crowded and dynamic environments where complex pedestrian interactions occur. Traditional trajectory-based methods often struggle with occlusions and overlapping behaviors, leading to inaccurate group identification. To address these limitations, we propose a novel algorithm that integrates an optimized YOLOv8 model with DeepSORT tracking, enhancing both detection accuracy and real time performance. Our approach uniquely combines high-precision object detection with stable multi-object tracking, ensuring consistent identification of individuals and groups over time, even in high-density scenarios. Additionally, we introduce an innovative method of constructing an adjacency matrix by integrating Euclidean distances and bounding box diagonal ratios, which is transformed into a graph to intricately analyze and predict complex group dynamics in real time. Experimental results on real-world airport CCTV footage demonstrate that our method significantly outperforms existing approaches, achieving higher precision and recall rates. Furthermore, the algorithm operates efficiently on standard hardware, indicating strong practical feasibility for real-time applications in public spaces. While challenges such as misclassification due to incomplete data annotations and occlusions remain, our study showcases the potential of integrating spatial and temporal data to advance real-time group detection and tracking, aiming to improve crowd management systems in public spaces.
引用
收藏
页码:184028 / 184039
页数:12
相关论文
共 50 条
  • [1] Real-Time Multi-object Detection and Tracking for Autonomous Robots in Uncontrolled Environments
    Said, Tarek
    Ghoniemy, Samy
    Karam, Omar
    2012 SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES'2012), 2012, : 67 - 72
  • [2] A real-time surveillance system with multi-object tracking
    Tsai, Tsung-Han
    Yang, Ching-Chin
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2023, 34 (04) : 767 - 791
  • [3] GREEDY ALGORITHM FOR REAL-TIME MULTI-OBJECT TRACKING
    Kim, Tae-Ho
    Lee, Changhoon
    Yoo, Chang D.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 398 - 402
  • [4] Approaches to Video Real time Multi-Object Tracking and Object Detection: A survey
    Bouraya, Sara
    Belangour, Abdessamad
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2021), 2021, : 145 - 151
  • [5] A real-time surveillance system with multi-object tracking
    Tsung-Han Tsai
    Ching-Chin Yang
    Multidimensional Systems and Signal Processing, 2023, 34 (4) : 767 - 791
  • [6] Real-Time Online Multi-Object Tracking in Compressed Domain
    Liu, Qiankun
    Liu, Bin
    Wu, Yue
    Li, Weihai
    Yu, Nenghai
    IEEE ACCESS, 2019, 7 : 76489 - 76499
  • [7] A Systematic Framework for Real-time Online Multi-object Tracking
    Noh, Gyeong-Soo
    Gwak, Jeonghwan
    Jeon, Moongu
    FOURTH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (CCAIS 2015), 2015, : 57 - 61
  • [8] LightMOT: a lightweight convolution neural network for real-time multi-object tracking
    Guo, Lie
    Ge, Pingshu
    Zhao, Yibing
    Wang, Dongxing
    Huang, Liang
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2023, 22 (03) : 152 - 161
  • [9] Real-Time Multi-Object Detection Using Enhanced Yolov5-7S on Multi-GPU for High-Resolution Video
    Shaikh, Shakil A.
    Chopade, Jayant J.
    Sardey, Mohini Pramod
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (02)
  • [10] Method of real-time multi-object tracking based on video images
    Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    不详
    Guangzi Xuebao, 2008, SUPPL. (256-259):