Fast convergences towards Euler-Mascheroni constant

被引:32
作者
Mortici C. [1 ]
机构
[1] Valahia University of Târgovişte, Department of Mathematics, 130082 Târgovişte
关键词
Euler-Mascheroni constant; Speed of convergence;
D O I
10.1590/S1807-03022010000300009
中图分类号
学科分类号
摘要
The aim of this paper is to introduce a new family of sequences which faster converge to the Euler-Mascheroni constant. Finally, numerical computations are given. © 2010 SBMAC.
引用
收藏
页码:479 / 491
页数:12
相关论文
共 28 条
[1]  
Alzer H., Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg, 68, pp. 363-372, (1998)
[2]  
Anderson G.D., Barnard R.W., Richards K.C., Vamanamurthy M.K., Vuorinen M., Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc., 347, 5, pp. 1713-1723, (1995)
[3]  
Detemple D.W., A quicker convergence to Euler's constant, Amer. Math. Monthly, 100, 5, pp. 468-470, (1993)
[4]  
Detemple D.W., A geometric look at sequences that converge to Euler's constant, College Math. J., 3, pp. 128-131, (2006)
[5]  
Elsner C., On a sequence transformation with integral coefficients for Euler's constant, Proc. Amer. Math. Soc., 123, 5, pp. 1537-1541, (1995)
[6]  
Elsner C., On arithmetic properties of the convergents of Euler's number, Colloq. Math., 79, 1, pp. 133-145, (1999)
[7]  
Elsner C., On a sequence transformation with integral coefficients for Euler's constant II, J. Number Th., 124, 2, pp. 442-453, (2007)
[8]  
Pilehrood K.H., Pilehrood T.H., Approximations to Euler's constant
[9]  
Pilehrood K.H., Pilehrood T.H., Arithmetical properties of some series with logarithmic coefficients, Math. Zeitschrift, 255, 1, pp. 117-131, (2007)
[10]  
Pilehrood K.H., Pilehrood T.H., Zudilin W., Irrationality of certain numbers that contain values of the di- and trilogarithmhttp, Math. Zeitschrift, 254, 2, pp. 299-313, (2006)