Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives

被引:0
|
作者
Debbouche, Nadjette [1 ]
Ouannas, Adel [1 ]
Grassi, Giuseppe [2 ]
Al-Hussein, Abdul-Basset A. [3 ]
Tahir, Fadhil Rahma [3 ]
Saad, Khaled M. [4 ]
Jahanshahi, Hadi [5 ]
Aly, Ayman A. [6 ]
机构
[1] Department Of Mathematics And Computer Science, University Of Larbi Ben m'Hidi, Oum El Bouaghi,04000, Algeria
[2] Dipartimento Ingegneria Innovazione, Universita Del Salento, Lecce,73100, Italy
[3] Electrical Engineering Department, College Of Engineering, University Of Basrah, Basrah, Iraq
[4] Department Of Mathematics, Faculty Of Applied Science, Taiz University, Taiz, Yemen
[5] Department Of Mechanical Engineering, University Of Manitoba, Winnipeg,MB,R3T 5V6, Canada
[6] Department Of Mechanical Engineering, College Of Engineering, Taif University, P.O.Box 11099, Taif,21944, Saudi Arabia
来源
Computational and Mathematical Methods in Medicine | 2022年 / 2022卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Model order reduction of commensurate linear discrete-time fractional-order systems
    Rydel, Marek
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Galek, Marcin
    IFAC PAPERSONLINE, 2018, 51 (01): : 536 - 541
  • [22] Stabilization of a new commensurate/incommensurate fractional order chaotic system
    Gholamin, P.
    Sheikhani, A. H. Refahi
    Ansari, A.
    ASIAN JOURNAL OF CONTROL, 2021, 23 (02) : 882 - 893
  • [23] On robust stability of incommensurate fractional-order systems
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [24] Reduced-Order Modeling of Commensurate Fractional-Order Systems
    Saxena, Sahaj
    Hote, Yogesh V.
    Arya, Pushkar Prakash
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [25] Stability Analysis for a Class of Fractional-Order System with Commensurate Order
    Wang, Dongfeng
    Wang, Xiaoyan
    Han, Pu
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3472 - 3478
  • [26] Numerical analysis of fractional-order tumor model
    Sohail, Ayesha
    Arshad, Sadia
    Javed, Sana
    Maqbool, Khadija
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2015, 8 (05)
  • [27] Optimal fractional-order PID control of chaos in the fractional-order BUCK converter
    Zhu, Darui
    Liu, Ling
    Liu, Chongxin
    PROCEEDINGS OF THE 2014 9TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2014, : 787 - 791
  • [28] Chaos control of an atomic force microscopy model in fractional-order
    Angelo M. Tusset
    Jose M. Balthazar
    Mauricio A. Ribeiro
    Wagner B. Lenz
    Rodrigo T. Rocha
    The European Physical Journal Special Topics, 2021, 230 : 3643 - 3654
  • [29] Chaos in a Fractional-Order Dynamical Model of Love and Its Control
    Cu, Rencai
    Xu, Yong
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 349 - 356
  • [30] Chaos in a fractional-order Rossler system
    Zhang, Weiwei
    Zhou, Shangbo
    Li, Hua
    Zhu, Hao
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1684 - 1691